Supporting Information

Synthesis, crystal structure, *in silico* studies of novel 2,4-dimethoxy-tetrahydropyrimido[4,5-b]quinolin-6(7H)-ones

Subham G. Patel,^a Ruturajsinh M. Vala,^a Paras J. Patel,^a Dipti B. Upadhyay,^a V. Ramkumar,^b Ramesh L. Gardas,^b and Hitendra M. Patel ^{a*}

^aDepartment of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India

^b Department of Chemistry, Indian Institute of Technology, Madras, India.

* Corresponding Author: Hitendra M. Patel, E-mail: <u>hm_patel@spuvvn.edu</u>.

Sr.	Content	Page No.
No.		
1	Comparisons of computed geometrical parameters of 4a	S2-S3
	using various basis sets in the gaseous phase with the	
	corresponding experimental ones.	
2	Comparisons of computed geometrical parameters of 4b,	S4-S5
	4c and 4d using B3LYP/6-31G(d) basis sets in the gaseous	
	phase with the corresponding experimental ones.	
3	Single-crystal X-ray diffraction data of compound 4(a-d)	S6-S13
4	Optimised structure of Molecule 4(a-d) using DFT	S14

Table of Contents

Structural					B3LYP			
Parameter	6-31G	6-31G(d)	6-31G	6-	6-311G+	6-311G++	6-311G++	X-ray data
			(d, p)	311G	(2d, p)	(d, p)	(d, 2p)	·
Bond length(Å)	_							
C3-C20	1.544	1.538	1.538	1.542	1.532	1.537	1.538	1.532
C3-C21	1.548	1.543	1.542	1.546	1.539	1.541	1.542	1.539
C3-C4	1.548	1.542	1.542	1.548	1.539	1.541	1.541	1.528
C4-C5	1.523	1.527	1.527	1.519	1.522	1.525	1.525	1.5
C5-O1	1.257	1.229	1.229	1.256	1.225	1.225	1.226	1.197
C5-C6	1.459	1.465	1.465	1.457	1.461	1.463	1.463	1.488
C6-C7	1.53	1.526	1.526	1.53	1.524	1.526	1.527	1.509
C6-C1	1.367	1.362	1.362	1.364	1.356	1.36	1.359	1.318
C7-C12	1.541	1.537	1.537	1.541	1.535	1.535	1.536	1.537
C7-C8	1.517	1.516	1.516	1.516	1.514	1.514	1.514	1.517
C8-C9	1.403	1.402	1.402	1.4	1.398	1.401	1.401	1.386
C8-C11	1.402	1.396	1.396	1.398	1.391	1.393	1.393	1.392
C9-O2	1.362	1.341	1.342	1.362	1.339	1.339	1.338	1.325
O2-C18	1.466	1.433	1.433	1.466	1.435	1.436	1.437	1.443
C9-N2	1.347	1.336	1.336	1.347	1.332	1.334	1.333	1.351
N2-C10	1.349	1.337	1.338	1.348	1.333	1.335	1.335	1.315
C10-O3	1.361	1.342	1.343	1.361	1.34	1.341	1.342	1.365
O3-C19	1.464	1.43	1.43	1.464	1.432	1.433	1.434	1.427
C10-N3	1.34	1.331	1.331	1.34	1.326	1.327	1.327	1.32
N3-C11	1.352	1.341	1.34	1.353	1.336	1.337	1.337	1.356
C11-N1	1.387	1.386	1.387	1.387	1.385	1.387	1.387	1.361
N1-C1	1.386	1.38	1.38	1.387	1.379	1.38	1.38	1.389
C1-C2	1.51	1.508	1.508	1.509	1.504	1.506	1.506	1.505
C2-C3	1.551	1.545	1.545	1.551	1.542	1.543	1.543	1.536
C12-C13	1.404	1.4	1.4	1.401	1.395	1.398	1.398	1.378
C12-C17	1.405	1.4	1.401	1.403	1.395	1.398	1.398	1.384
C13-C14	1.399	1.395	1.394	1.398	1.391	1.394	1.393	1.388
C14-C15	1.392	1.393	1.393	1.388	1.387	1.39	1.39	1.374
C15-Cl1	1.833	1.763	1.763	1.835	1.761	1.762	1.762	1.731
C15-C16	1.392	1.393	1.393	1.389	1.387	1.391	1.391	1.348
C16-C17	1.4	1.396	1.394	1.397	1.391	1.393	1.394	1.395
R ² value	0.9513	0.9715	0.9711	0.9507	0.9734	0.972	0.9724	1
Bond angle (°)								
C20-C3-C21	109.05	109.02	109.02	109.1	109.01	109.02	108.96	108.9
C21-C3-C4	110.48	110.49	110.5	110.41	110.43	110.44	110.46	110.5
C3-C4-C5	114.2	114.64	114.7	114.28	114.97	114.92	114.87	114.65
C4-C5-O1	120.08	120.35	120.32	120.07	120.2	120.23	120.31	121.02
C4-C5-C6	118.41	117.84	117.8	118.49	118.07	117.91	117.89	116.92
C5-C6-C7	117.93	118.07	118.1	118.23	118.53	118.54	118.51	115.53
C5-C6-C1	119.99	119.95	119.97	119.94	119.76	119.85	119.87	120.68
C7-C6-C1	122.08	121.98	121.92	121.84	121.7	121.6	121.62	123.78

Table S1. Comparisons of computed geometrical parameters of **4a** using various basis sets in the gaseous phase with the corresponding experimental ones.

C6-C7-C12	111.12	111.07	111.08	111.13	111.15	111.03	110.98	110.15
C6-C7-C8	109.87	109.57	109.55	109.9	109.56	109.49	109.51	109.61
C7-C8-C9	123.91	124.28	124.32	123.99	124.52	124.51	124.52	121.91
C7-C8-C11	122.04	122.21	122.18	121.72	121.86	121.9	121.9	122.21
C9-C8-C11	114.02	113.49	113.48	114.26	113.6	113.56	113.56	115.72
C8-C9-N2	123.33	123.6	123.62	123.12	123.42	123.38	123.41	122.95
C8-C9-O2	117.55	117.07	117.1	117.56	117.16	117.23	117.22	118.28
C9-O2-C18	118.46	117.9	117.89	118.73	118.19	118.38	118.4	118.18
C9-N2-C10	116.61	115.94	115.9	116.77	116.18	116.21	116.19	114.23
C10-O3-C19	118.06	117.66	117.64	118.34	117.95	118.16	118.1	116.53
N2-C10-N3	126.06	127.29	127.29	125.97	126.95	126.98	127	130.38
C10-N3-C11	115.49	114.6	114.62	115.42	114.9	114.88	114.85	113.68
N3-C11-C8	124.46	125.06	125.07	124.42	124.89	124.95	124.95	123.01
C8-C11-N1	119.4	119.01	118.99	119.4	118.98	118.94	118.94	120.79
C11-N1-C1	122.14	121.91	121.88	122.01	121.64	121.65	121.69	120.58
N1-C1-C6	120.59	120.64	120.66	120.44	120.59	120.56	120.61	122.21
C6-C1-C2	123.62	123.77	123.76	123.74	123.96	123.87	123.89	123.6
C1-C2-C3	113.16	113.45	113.45	113.3	113.72	113.64	113.57	113.1
C2-C3-C4	107.71	107.65	107.62	107.74	107.71	107.69	107.73	108
C7-C12-C13	120.09	120.21	120.18	119.99	120.1	120.04	120.09	121.96
C12-C13-C14	120.96	121.15	121.21	120.97	121.21	121.18	121.18	120.32
C13-C14-C15	118.77	119.19	119.14	118.74	119.18	119.19	119.19	119.69
C14-C15-Cl1	119.13	119.59	119.54	119.09	119.59	119.58	119.59	119.22
C14-C15-C16	121.91	120.96	120.98	122	120.96	120.58	120.97	120.57
C15-C16-C17	118.58	119.05	119.07	118.53	119.07	119.03	119.05	120.46
C16-C17-C12	121.09	121.27	121.28	121.15	121.31	121.34	121.27	119.7
C17-C12-C13	118.69	118.38	118.31	118.61	118.28	118.29	118.34	119.2
R ² value	0.9149	0.9279	0.927	0.908	0.9165	0.9156	0.9174	1

010(0)00000		Bussens P		- comospon	ang mpon		-	
Structural	B3LYP/	X-ray data	Structural	B3LYP/	X-ray	Structural	B3LYP/	X-ray data
Parameter	6-31G(d)	of 4b	Parameter	6-31G(d)	data of 4c	Parameter	6-31G(d)	of 4d
Bond length(Å)								
C3-C13	1.542	1.519	C1-C2	1.547	1.532	C3-C12	1.542	1.523
C3-C12	1.537	1.528	C2-C12	1.542	1.526	C3-C13	1.538	1.527
C3-C4	1.543	1.528	C2-C13	1.537	1.522	C3-C4	1.542	1.525
C4-C5	1.528	1.5	C2-C3	1.544	1.525	C4-C5	1.528	1.503
C5-O1	1.23	1.231	C3-C4	1.527	1.502	C5-O1	1.229	1.233
C5-C6	1.465	1.447	C4-O1	1.229	1.234	C5-C6	1.464	1.446
C6-C7	1.525	1.52	C4-C5	1.466	1.445	C6-C7	1.525	1.519
C6-C1	1.361	1.351	C5-C11	1.362	1.357	C6-C1	1.362	1.357
C7-C14	1.537	1.532	C5-C6	1.527	1.523	C7-C14	1.537	1.529
C7-C8	1.517	1.513	C6-C14	1.538	1.529	C7-C8	1.517	1.512
C8-C9	1.403	1.395	C6-C7	1.516	1.515	C8-C9	1.403	1.392
C8-C11	1.396	1.375	C7-C10	1.39	1.379	C8-C11	1.396	1.378
C9-O2	1.342	1.347	C7-C8	1.408	1.392	C9-O2	1.341	1.347
O2-C20	1.432	1.436	C8-O2	1.34	1.35	O2-C20	1.432	1.438
C9-N2	1.336	1.326	O2-C20	1.434	1.434	C9-N2	1.336	1.329
N2-C10	1.337	1.338	C8-N3	1.331	1.326	N2-C10	1.338	1.339
C10-O3	1 343	1 345	N3-C9	1 339	1 336	C10-O3	1 343	1 348
03-C21	1 429	1 433	C9-01	1 344	1 347	03-C21	1.3 13	1 4 3 4
C10-N3	1 331	1 313	01-C21	1 429	1.517	C10-N3	1 331	1 313
N3-C11	1 341	1.313	C9-N2	1 329	1.32	N3-C11	1 34	1 351
C11-N1	1 387	1.352	N2-C10	1 348	1.32	C11-N1	1 386	1 373
N1-C1	1 382	1.375	C10-N1	1 387	1.35	N1-C1	1 381	1.375
C1 C2	1.502	1.307	N1 C11	1.387	1.370	C1 C2	1.501	1.371
C2-C3	1.508	1.521	C11-C1	1.502	1.508	C2-C3	1.545	1.528
C14-C15	1.545	1.321	C14-C15	1 394	1 383	C14-C15	1.545	1.326
C14-C19	1.401	1 381	C15-C16	1.394	1.385	C15-C16	1 303	1.38
C15 C16	1 305	1 30	C16 03	1 360	1.307	C16 C11	1.555	1.56
C16 C17	1.395	1.359	03 C22	1.307	1.374	C16 C17	1 304	1.745
C10-C17	1.390	1.308	C16 C17	1.417	1.410	C10-C17	1.394	1.307
C18 C19	1.390	1.304	C17 C18	1 308	1.378	C18 C19	1.395	1.372
010-019	1.590	1.304	C18 C19	1.398	1.385	C10-C19	1.595	1.382
-	_	-	C10-C17	1.391	1.307	017-014	1.4	1.565
- D ² voluo	0.0827	-	019-014	0.0991	1.392	-	-	-
Rond angle (%)	0.7027			0.9001			0.7710	
C12 C2 C12	100.04	100.27	C1 C2 C2	107.70	107.22	C12 C2 C12	100.00	108.00
C12-C3-C13	109.04	109.27	C1-C2-C3	107.79	107.23	C12-C3-C13	108.98	108.99
C13-C3-C4	110.45	110.42	CI-C2-CI2	110.79	110.31	C12-C3-C4	110.51	110.44
C3-C4-C5	114.05	110.2	C12-C2-C13	109.08	108.47	C3-C4-C5	114.05	115.79
C4-C5-O1	120.25	119.05	C2-C3-C4	114.44	115.97	C4-C5-O1	120.4	119.94
C4-C5-C6	11/.8/	118.94	C3-C4-O4	120.46	119.89	C4-C5-C6	117.81	118.73
C5-C6-C7	118.11	118.84	C3-C4-C5	117.66	118.45	C5-C6-C7	117.94	118.48
C5-C6-C1	119.91	118.89	04-05-06	117.96	118.3	C5-C6-C1	120.04	119.37
C7-C6-C1	121.98	122.27	C4-C5-C11	119.92	119.63	C/-C6-C1	122.02	122.14
C6-C7-C14	111.16	111.19	CII-C5-C6	122.11	122.05	C6-C/-C14	111.12	111.08
C6-C7-C8	109.57	109.51	C5-C6-C14	110.85	112.33	C6-C7-C8	109.71	109.42
07-08-09	124.34	124.26	CS-C6-C7	109.75	109.44	07-08-09	124.24	124.13
C7-C8-C11	122.2	121.79	C6-C7-C8	124.25	123.63	C7-C8-C11	122.23	121.65
C9-C8-C11	113.43	113.86	C6-C7-C10	122.24	122.17	C9-C8-C11	113.5	114.09
C8-C9-O2	117.08	116.45	C10-C7-C8	113.49	113.98	C8-C9-O2	117.05	116.39
C9-O2-C20	117.87	117.67	C7-C8-O2	116.79	115.93	C9-O2-C20	117.95	117.19
C8-C9-N2	123.64	124.48	C8-O2-C20	117.58	117.56	C8-C9-N2	123.59	124.47
C9-N2-C10	115.92	114.39	C7-C8-N3	123.95	124.66	C9-N2-C10	115.9	114.16
C10-O3-C21	117.57	116.47	C8-N3-C9	115.66	114.3	C10-O3-C21	117.62	116.78
N2-C10-N3	127.32	128.49	C9-O1-C21	117.33	116.44	N2-C10-N3	127.34	128.72

Table S2. Comparisons of computed geometrical parameters of **4b**, **4c** and **4d** using B3LYP/6-31G(d) basis sets in the gaseous phase with the corresponding experimental ones.

C10-N3-C11	114.55	114.2	N3-C9-N2	127.39	128.5	C10-N3-C11	114.59	114.24
N3-C11-C8	125.11	124.5	C9-N2-C10	114.74	114.22	N3-C11-C8	125.05	124.24
C8-C11-N1	119	120.5	N2-C10-C7	124.75	124.26	C8-C11-N1	119.02	120.33
C11-N1-C1	121.84	121.46	C-C10-N1	119.4	120.36	C11-N1-C1	121.92	121.48
N1-C1-C6	120.67	121.09	C10-N1-C11	121.75	121.26	N1-C1-C6	120.69	120.69
C6-C1-C2	123.85	123.82	N1-C11-C5	120.63	121.53	C6-C1-C2	123.71	123.61
C1-C2-C3	113.42	114.01	C5-C11-C1	123.75	123.26	C1-C2-C3	113.45	113.8
C2-C3-C4	107.63	107.22	C11-C1-C2	113.38	113.61	C2-C3-C4	107.67	107.76
C14-C15-C16	120.69	120.61	C14-C15-C16	120.94	121.2	C14-C15-C16	119.66	119.87
C15-C16-C17	120.3	120.32	C15-C16-O3	115.44	115.33	C15-C16-Cl1	119.16	119.39
C16-C17-C18	119.48	119.68	C16-O3-C22	118.06	118.04	C15-C16-C17	121.72	121.51
C17-C18-C19	120.11	120.21	C15-C16-C17	119.95	120.42	C16-C17-C18	118.39	118.91
C18-C19-C14	120.84	121.01	C16-C17-C18	118.89	118.34	C17-C18-C19	120.6	120.53
C19-C14-C15	118.58	118.15	C17-C18-C19	121.25	121.67	C18-C19-C14	120.63	120.67
-	-	-	C18-C19-C14	119.91	120.13	C19-C14-C15	119	118.49
-	-	-	C19-14-C15	119.05	118.22	-	-	-
R ² value	0.9802			0.9795			0.9813	

Crystal X-ray report of compound 4a [CCDC: 2133239].

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ...

Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait . .

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 101

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Please wait while processing Interpreting this report

Structure factor report

Datablock: 101

Bond precisi	.on:	C-C = 0.0082 A		Wavelength=0.71073		
Cell:	a=6.1119(1	.7)	b=12.8	356(3)	c=13.503	(2)
	alpha=74.0	18(10)	beta=8	33.479(15)	gamma=76	.619(15)
Temperature:	296 K					
		Calculate	ed			Reported
Volume		990.9(4)				990.8(4)
Space group		P -1				P -1
Hall group		-P 1				-P 1
Moiety formu	ıla	C21 H22	Cl N3 C	03		?
Sum formula		C21 H22	Cl N3 C	03		C21 H22 C1 N3 O3
Mr		399.87				399.86
Dx,g cm-3		1.340				1.340
Z		2				2
Mu (mm-1)		0.220				0.220
F000		420.0				420.0
F000'		420.47				
h,k,lmax		7,15,16				7,15,16
Nref		3503				2395
Tmin,Tmax		0.944,0.9	965			0.941,0.966
Tmin'		0.940				
Correction m MULTI-SCAN	ethod= # R	eported T	Limit	s: Tmin=0.941	Tmax=0.96	66 AbsCorr =
Data complet	eness= 0.6	84		Theta(max)= 2	4.997	
R(reflection	is)= 0.0636	(1393)			wR2(re 2395)	flections)= 0.2058(
S = 1.083		Npar	= 261			

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level A

PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full value Low . 0.684 Why?

Author Response: Even though crystal data was attempted to collected up to 0.78 $\$ resolution, the crystal (the largest available) still diffracted quite weakly at high angle.

Alert level B

PLAT911_ALERT_3_B Missing FCF Refl Between Thmin & STh/L= 0.595 1109 Report

Author Response: These reflections were probably affected by unexpected deviations in their

intensities for symmetry equivalent measurements and omitted during initial data reduction.

•Alert level C
PLAT088_ALERT_3_C Poor Data / Parameter Ratio 9.18 Note
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00816 Ang.
PLAT905_ALERT_3_C Negative K value in the Analysis of Variance2.303 Report
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers 1 Check
Alert level G
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check
PLAT793_ALERT_4_G Model has Chirality at C7 (Centro SPGR) S Verify
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do !
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF 1 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res 50.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 0 Info
1 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight
8 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
8 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022 **Datablock 101** - ellipsoid plot

Crystal X-ray report of compound **4b** [CCDC: 2149722]. checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ...

Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 102

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Please wait while processing Interpreting this report

Structure factor report

Datablock: 102

Bond precision: C		C-C = 6	C-C = 0.0023 A		Wavelength=0.71073			
Cell:	a=11.3367(6)	b=13.5799(7)	c=13.054	5(6)			
	alpha=90		beta=108.872(2)	gamma=90				
Temperature:	296 K							
		Calculate	ed		Reported			
Volume		1901.73(2	L7)		1901.73(17)			
Space group		P 21/n			P 21/n			
Hall group		-P 2yn			-P 2yn			
Moiety formu	la	C21 H23 M	13 03		?			
Sum formula		C21 H23 M	13 03		C21 H23 N3 O3			
٩r		365.42			365.42			
Dx,g cm-3		1.276			1.276			
Z		4			4			
Mu (mm-1)		0.087			0.087			
F000		776.0			776.0			
F000'		776.33						
h,k,lmax		13,16,15			13,16,15			
Nref		3353			3353			
Tmin,Tmax		0.977,0.9	986		0.976,0.986			
Tmin'		0.976						
Correction m MULTI-SCAN	ethod= # Re	eported T	Limits: Tmin=0.976	Tmax=0.98	36 AbsCorr =			
Data complet	eness= 1.00	90	Theta(max)= 2	5.000				
R(reflection	s)= 0.0389	(2604)		wR2(re 3353)	flections)= 0.1134(
S = 1.556		Npar=	= 253					

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B

PLAT230_ALERT_2_B Hirshfeld Test Diff for C3 --C4 . 8.3 s.u.

Author Response: This alarm is due to the elongated ADPs of carbon atoms which suggest that these are probably disordered.

Alert level C

PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 --C13 . 6.5 s.u.

Author Response: This alarm is due to the elongated ADPs of carbon atoms which suggest that

these are probably disordered.

PLAT230_ALERT_2_C Hirshfeld Test Diff for C17 --C18 . 5.5 s.u.

Author Response: This alarm is due to the elongated ADPs of carbon atoms which suggest that these are probably disordered.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C3 Check PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -0.299 Report

Alert level G	
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical	? Check
PLAT793_ALERT_4_G Model has Chirality at C7 (Centro SPGR) S	Verify
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Ple	ase Do !
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still 50	0% Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 4.7	Low
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged	Please Check
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res 5	0.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	3 Info
0 ALERT level A = Most likely a serious problem - resolve or explain	
1 ALERT level B = A potentially serious problem, consider carefully	
4 ALERT level C = Check. Ensure it is not caused by an omission or oversi	ght
8 ALERT level G = General information/check it is not something unexpect	ed
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data	
6 ALERT type 2 Indicator that the structure model may be wrong or deficier	nt
3 ALERT type 3 Indicator that the structure quality may be low	
1 ALERT type 4 Improvement, methodology, query or suggestion	
1 ALERT type 5 Informative message check	

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022 Datablock 102 - ellipsoid plot

Crystal X-ray report of compound 4c [CCDC: 2157100].

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ...

Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait . . .

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 105

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Please wait while processing Interpreting this report

Structure factor report

Datablock: 105

Bond precision: C-C = 0.0028 A				Wa	velength=0.71073
Cell:	a=12.5837(7(13) b=13.0752(17) c=13.0			(16)
	alpha=90		beta=110.844(5)	gamma=90	
Temperature:	296 K				
		Calculat	ed	P	Reported
Volume		2004.4(4	1)	2	2004.4(4)
Space group		P 21/n		F	21/n
Hall group		-P 2yn		-	-P 2yn
Moiety formu	ıla	C22 H25	N3 04	?	?
Sum formula		C22 H25	N3 04	C	C22 H25 N3 O4
Mr		395.45		3	395.45
Dx,g cm-3		1.311		1	1.310
Z		4		4	1
Mu (mm-1)		0.091		e	0.091
F000		840.0		8	340.0
F000'		840.38			
h,k,lmax		14,15,15	5	1	14,15,15
Nref		3527		З	3528
Tmin,Tmax		0.978,0.	991	e	0.978,0.991
Tmin'		0.978			
Correction m MULTI-SCAN	ethod= # Re	eported ⁻	T Limits: Tmin=0.978	Tmax=0.991	AbsCorr =
Data complet	eness= 1.00	90	Theta(max)= 2	24.999	
R(reflectior	ns)= 0.0429((2344)		wR2(refl 3528)	lections)= 0.1160(
S = 1.029		Npar	*= 268		
The following test-na Click on the l	ALERTS we me_ALERT hyperlinks fo	ere gener _ <mark>alert-t</mark> or more c	ated. Each ALERT has ype_alert-level . letails of the test.	the format	
• Alert I PLAT230_ALE PLAT905_ALE	EVELC ERT_2_C Hir ERT_3_C Net	shfeld Te gative K	est Diff for C2 value in the Analysis o	·C13 . of Variance .	5.7 s.u. 0.721 Report
• Alert I PLAT007_ALE PLAT066_ALE PLAT793_ALE PLAT883_ALE PLAT909_ALE PLAT941_ALE	EVELG RT_5_G Nu RT_1_G Pre RT_4_G Mo RT_1_G No RT_3_G Per RT_3_G Ave	mber of edicted a del has (Info/Val rcentage erage HK	Unrefined Donor-H At nd Reported Tmin&Tm Chirality at C6 (ue for _atom_sites_sc of I>2sig(I) Data at 1 L Measurement Multip	oms nax Range Io Centro SPGF olution_prim Fheta(Max) S plicity	1 Report dentical ? Check R) S Verify ary Please Do ! Still 32% Note 3.5 Low

 PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res ..
 50.0 Degree

 PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
 4 Info

 0
 ALERT level A = Most likely a serious problem - resolve or explain
 0

 0
 ALERT level B = A potentially serious problem, consider carefully
 2

 2
 ALERT level C = Check. Ensure it is not caused by an omission or oversight
 8

 8
 ALERT level G = General information/check it is not something unexpected

 2
 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

 2
 ALERT type 2 Indicator that the structure model may be wrong or deficient

 3
 ALERT type 3 Indicator that the structure quality may be low

 1
 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022 Datablock 105 - ellipsoid plot

Crystal X-ray report of compound **4d** [CCDC: 2157099]. checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait . .

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 104

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Please wait while processing Interpreting this report

Structure factor report

Datablock: 104

Bond precision:		C-C = 0.0031 A			Wavelength=0.71073	
Cell:	a=12.2403((6)	b=13.3075(7)	c=12.840	08(7)	
	alpha=90		beta=109.168(2)	gamma=90	0	
Temperature:	296 K					
		Calculat	ed		Reported	
Volume		1975.65(18)		1975.65(18)	
Space group		P 21/n			P 21/n	
Hall group		-P 2yn			-P 2yn	
Moiety formu	ıla	C21 H22	Cl N3 O3		?	
Sum formula		C21 H22	сl мз оз		C21 H22 Cl N3 O3	
Mr		399.87			399.86	
Dx,g cm-3		1.344			1.344	
Z		4			4	
Mu (mm-1)		0.221			0.221	
F000		840.0			840.0	
F000'		840.93				
h,k,lmax		14,15,15			14,15,15	
Nref		3473			3472	
Tmin,Tmax		0.969,0.	978		0.947,0.978	
Tmin'		0.946				
Correction m MULTI-SCAN	nethod= # R	eported T	Limits: Tmin=0.947	Tmax=0.9	978 AbsCorr =	
Data complet	eness= 1.0	00	Theta(max)= 2	25.000		
R(reflections)= 0.0409(2579)			wR2(r 3472)	eflections)= 0.1089(
S = 1.015		Npar	= 257			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level G		
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	1 Report	
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical	? Check	
PLAT793_ALERT_4_G Model has Chirality at C7 (Centro SPGR)	S Verify	
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !	
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still	53% Note	
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	4.0 Low	
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res	50.0 Degree	
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	9 Info	

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
8 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient

- 2 ALERT type 3 Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022 Datablock 104 - ellipsoid plot

Optimised structure of Molecule 4(a-d) using B3LYP/6-31G(d) basis sets in gaseous state.

