**Electronic Supplementary Information** 

## Aqueous Lubrication and Wear Properties of Nonionic Bottle-Brush Polymers

Hwi Hyun Moon, <sup>1</sup>Eun Jung Choi, <sup>1</sup> Sang Ho Yun, <sup>1</sup> Youn Chul Kim, <sup>2</sup> Thathan Premkumar<sup>1,3</sup>\*
and Changsik Song<sup>1</sup>,\*

<sup>1</sup>Department of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea

<sup>2</sup>Department of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419,

Republic of Korea

Republic of Korea

<sup>3</sup>The University College, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea.

\*Email: tprem@skku.edu (TP); songcs@skku.edu (CS).

## **Table of Contents**

## 1. Supplementary Figures and Tables

| Table S1.  | Molecular weights of PS, BPS, PHEMA and BPHEMA.          | S2 |
|------------|----------------------------------------------------------|----|
| Figure S1. | GPC traces of PS, BPS, PHEMA and BPHEMA.                 | S2 |
| Table S2.  | Friction coefficients of Si wafer, PHEMA, BPHEMA and BPS | S3 |
| Table S3.  | Friction coefficients of BPHEMA complex with HA and PVA. | S3 |
| Figure S2. | Depth data of BPHEMA complex with HA and PVA after       | S4 |
|            | wear analysis.                                           |    |
| Table S4.  | T <sub>g</sub> data of PS, BPS, PHEMA, BPHEMA            | S4 |
| Figure S3. | Storage modulus master curve of PS and BPS               | S5 |

## 2. NMR spectra of the synthesized compounds

Table S1. Molecular weights of polymers.

| Entry | Linear(P) and Bottle-brush polymer(BP) | M <sub>n</sub> [Da] | $M_{\rm w}/M_{\rm n}$ |
|-------|----------------------------------------|---------------------|-----------------------|
| 1     | PS                                     | 2,300               | 1.06                  |
| 2     | BPS                                    | 14,000              | 1.07                  |
| 3     | PHEMA                                  | 6,800               | 1.55                  |
| 4     | BPHEMA                                 | 49,300              | 1.48                  |

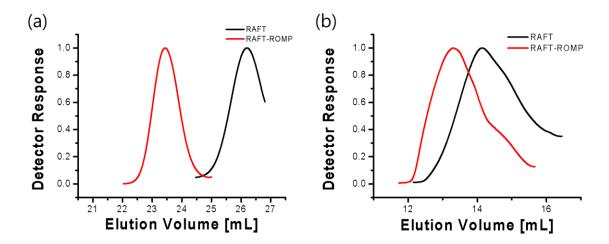



Figure S1. GPC traces of the chain extensions to BPS and BPHEMA.

Table S2. Friction coefficients of Si wafer, PHEMA, BPHEMA, and BPS.

|               | Friction coefficient |                 |
|---------------|----------------------|-----------------|
|               | Dry                  | In water        |
| Si-wafer      | 0.86±0.01            | 0.37±0.04       |
| <b>BPHEMA</b> | $0.73 \pm 0.02$      | $0.27 \pm 0.04$ |
| BPS           | $0.46 \pm 0.15$      | $0.30 \pm 0.15$ |
| РНЕМА         | $0.77 \pm 0.04$      | $0.35 \pm 0.04$ |

Table S3. Friction coefficients of BPHEMA complexes with HA and PVA.

|                | Friction coefficient |                  |
|----------------|----------------------|------------------|
|                | Dry                  | In water         |
| HA             | $0.41 \pm 0.14$      | 0.46±0.05        |
| HA:BPHEMA(2:1) | $0.49 \pm 0.10$      | $0.36 \pm 0.06$  |
| HA:BPHEMA(1:1) | $0.56 \pm 0.06$      | $0.36 \pm 0.03$  |
| HA:BPHEMA(1:2) | $0.56 \pm 0.07$      | $0.30 \pm 0.006$ |

|                 | Friction coefficient |                  |
|-----------------|----------------------|------------------|
|                 | Dry                  | In water         |
| PVA             | $0.50 \pm 0.04$      | $0.36 \pm 0.04$  |
| PVA:BPHEMA(2:1) | $0.52 \pm 0.05$      | $0.40 \pm 0.05$  |
| PVA:BPHEMA(1:1) | $0.54 \pm 0.08$      | $0.39 \pm 0.004$ |
| PVA:BPHEMA(1:2) | $0.66 \pm 0.10$      | $0.37 \pm 0.05$  |

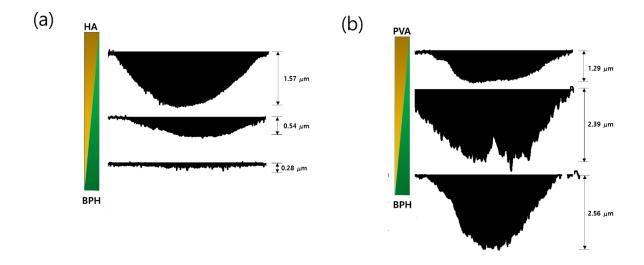



Figure S2. Depth data of BPHEMA complexes with (a) HA and (b) PVA after wear analysis.

**Table S4.** Glass transition temperatures of PS, PHEMA, BPS, and BPHEMA analyzed by DSC.

| Sample | T <sub>g</sub> (°C) |
|--------|---------------------|
| PS     | 59.3                |
| PHEMA  | 69.0                |
| BPS    | 73.0                |
| ВРНЕМА | 90.6                |

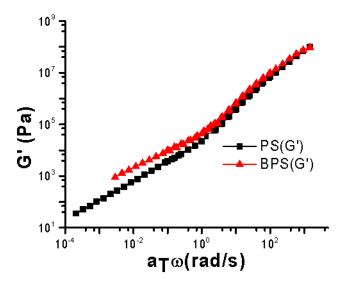



Figure S3. Storage modulus master curve of PS and BPS at  $T_{ref} = T_{\rm g} + 40\ ^{\rm o}C$ 

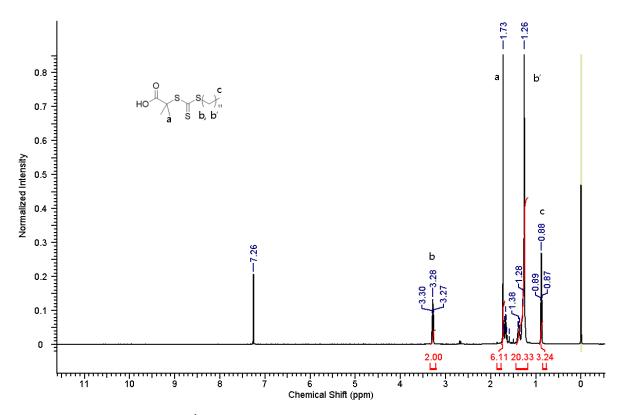



Figure S4. <sup>1</sup>H NMR spectrum of CTA (500 MHz, CDCl<sub>3</sub>).

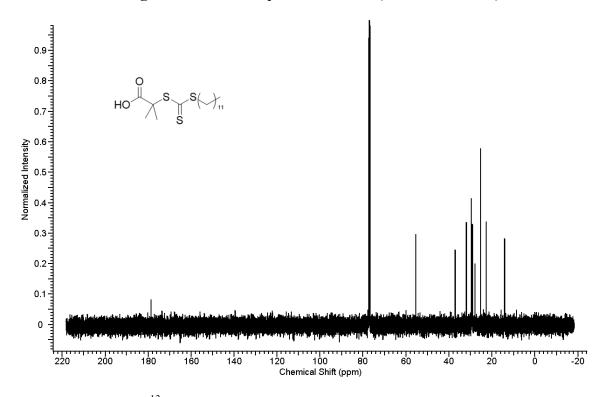



Figure S5.  $^{13}$ C NMR spectrum of the compound CTA (125 MHz, CDCl<sub>3</sub>).

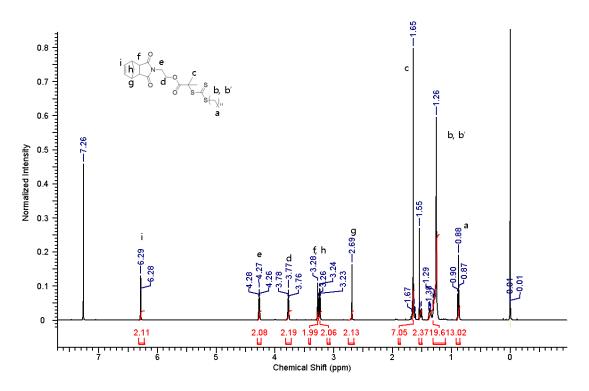



Figure S6. <sup>1</sup>H NMR spectrum of CTA-norbornene (500 MHz, CDCl<sub>3</sub>).

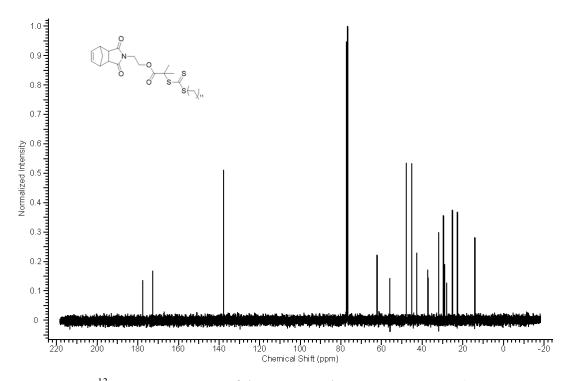



Figure S7. <sup>13</sup>C NMR spectrum of the compound CTA-norbornene (125 MHz, CDCl<sub>3</sub>).

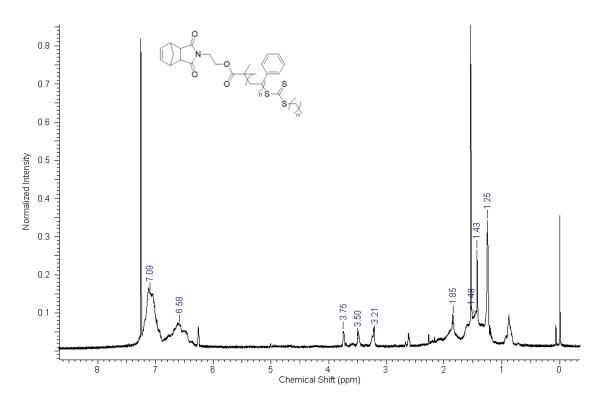



Figure S8. <sup>1</sup>H NMR spectrum of PS (500 MHz, CDCL<sub>3</sub>).

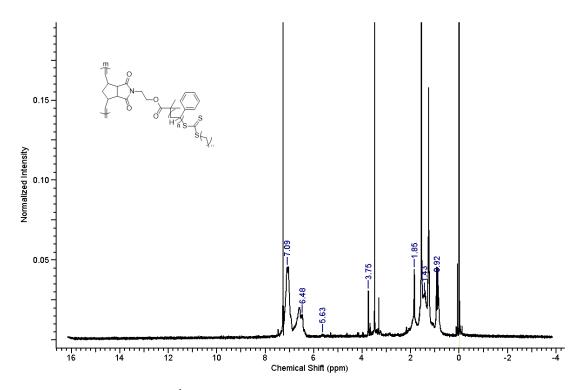



Figure S9. <sup>1</sup>H NMR spectrum of BPS (500 MHz, CDCL<sub>3</sub>).

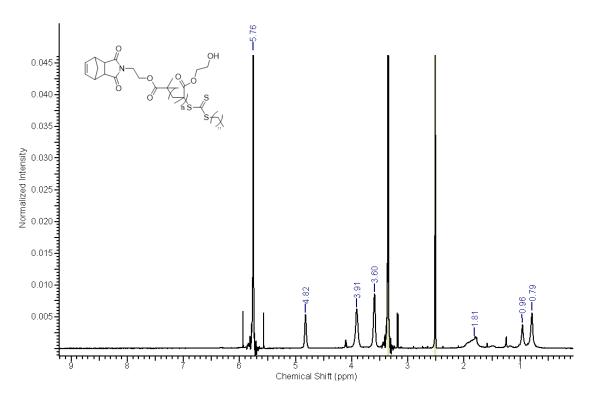



Figure S10. <sup>1</sup>H NMR spectrum of PHEMA (500 MHz, DMSO-*d*<sub>6</sub>).

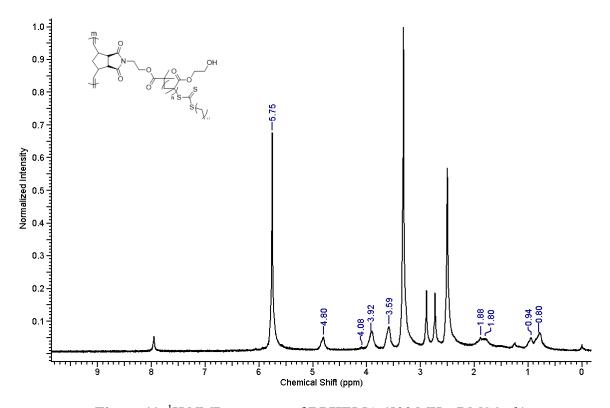



Figure 11.  $^{1}$ H NMR spectrum of **BPHEMA** (500 MHz, DMSO- $d_6$ ).