
Vanillin-crosslinked chitosan/ZnO nanocomposites as drug delivery system for 5-Fluorouracil: study the release behavior via mesoporous ZrO₂-Co₃O₄ nano-oxides modified sensor and antitumor activity

Nehal Salahuddin ^a*, Salem Awad, Mona Elfiky ^a*

^a Chemistry Department, Faculty of Science, Tanta, 31527, Egypt. E-mail address: Nehal.attaf@science.tanta.edu.eg & Elfiky mona@science.tanta.edu.eg

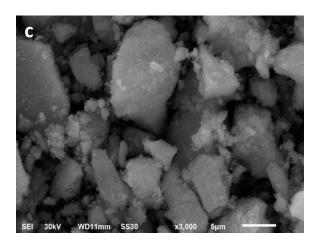


Fig. S₁. EDX analysis of CV₅ (a&b), SEM of mesoporous ZrO₂-Co₃O₄ NPs (c)

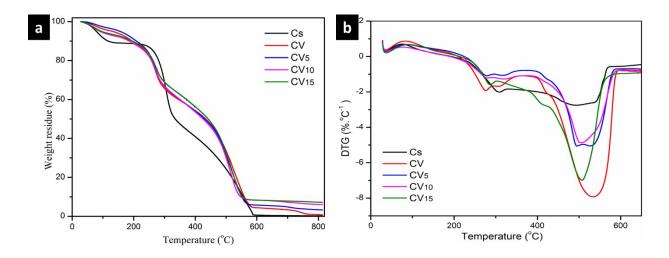


Fig. S₂. (a) TGA and (b) DTG of CS, CV, CV_5 , CV_{10} and CV_{15} .

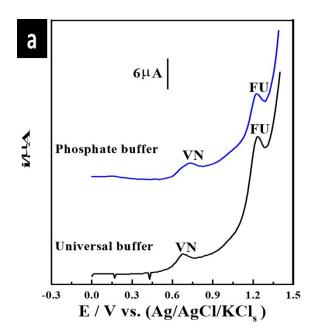
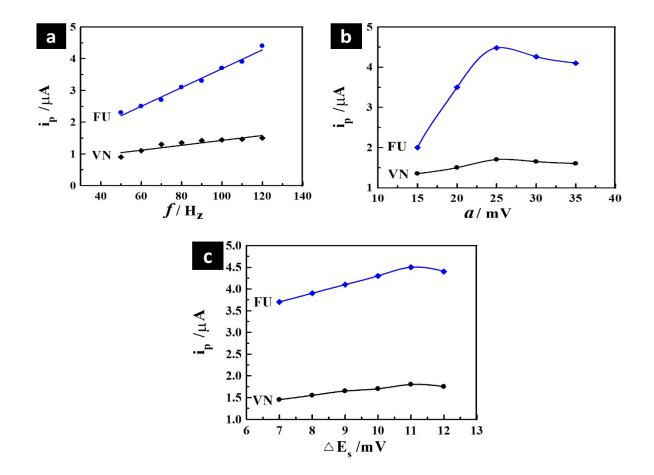
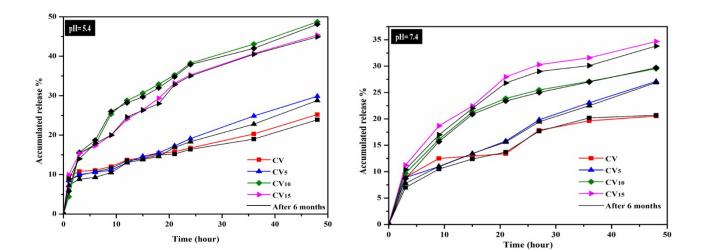




Fig. S₃. Effect of different types of buffer solutions at the 1.0% [ZrO₂-Co₃O₄ NPs] MCPS ($a = 25 \text{ mV}, f = 60 \text{ Hz}, \text{ and } \Delta E_s = 10 \text{ mV}$).

Fig. S₄. Influence of changing of **(A)** frequency (*f*), **(B)** pulse amplitude (*a*), and **(C)** scan increment (E_s) using co-mixed liquor of 4.5 μ M 5-FU and 0.65 μ M Vn upon 1.0 % [ZrO₂-Co₃O₄ NPs] MCPS at E_{acc} = 0V and t_{acc} = 12s.

Fig.S₅. *In-vitro* release of 5-FU from 5-FU/CV, 5-FU/CV₅, 5-FU/CV₁₀ and 5-FU/CV₁₅ new and 6 months stores samples at pH 5.4 and pH 7.4.

