Supporting Online Material for

Copper-catalyzed three-component reaction to synthesize polysubstituted imidazo[1,2-a]pyridines

Zitong Zhou, a Danyang Luo, a Guanrong Li, a Zhongtao Yang, a Liao Cui* a and Weiguang Yang* a,b,c

a Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
b The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China.
c Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.

Email: luohui@gdmu.edu.cn; cuiliao@163.com, 09ywg@163.com

Table of Contents

1. The structures of starting materials ... S2
2. General information........... ... S3
3. NMR Spectra ... S4
1. The structures of starting materials.

The structures of starting materials 1a-1g.

\[\text{1a} \quad \text{1b} \quad \text{1c} \quad \text{1d} \quad \text{1e} \quad \text{1f} \quad \text{1g} \]

The structures of starting materials 2a-2g.

\[\text{2a} \quad \text{2b} \quad \text{2c} \quad \text{2d} \quad \text{2e} \quad \text{2f} \quad \text{2g} \]

The structures of starting materials 3a-3i.

\[\text{3a} \quad \text{3b} \quad \text{3c} \quad \text{3d} \quad \text{3e} \quad \text{3f} \quad \text{3g} \quad \text{3h} \quad \text{3i} \]
2. General Information

1H and 13C {1H} NMR spectra were recorded at ambient temperatures on a 400 MHz Bruker spectrometer using CDCl$_3$ or DMSO-d_6 as solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts are presented as δ values relative to TMS and 1H–1H coupling constants (J values) are given in Hz. IR spectra were recorded as KBr pellets on a Nicolet FT-IR 5DX spectrometer while HRMS measurements were carried out on a Bruker micrOTOF-Q II spectrometer. Melting points were determined on a Yanaco melting point apparatus and are uncorrected.
Figure S1. 400 MHz 1H NMR spectrum of compound 4a (recorded in CDCl$_3$).
Figure S2. 100 MHz $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 4a (recorded in CDCl$_3$).

4a
Figure S3. 400 MHz 1H NMR spectrum of compound 4b (recorded in CDCl$_3$).
Figure S4. 100 MHz 13C{1H} NMR spectrum of compound 4b (recorded in CDCl$_3$).
Figure S5. 400 MHz 1H NMR spectrum of compound 4c (recorded in CDCl$_3$).
Figure S6. 100 MHz 13C{1H} NMR spectrum of compound 4c (recorded in CDCl$_3$).
Figure S7. 400 MHz 1H NMR spectrum of compound 4d (recorded in CDCl$_3$).

![NMR Spectrum of Compound 4d](image-url)
Figure S8. 100 MHz 13C{1H} NMR spectrum of compound 4d (recorded in CDCl$_3$).

![NMR spectrum of compound 4d](image)
Figure S9. 400 MHz 1H NMR spectrum of compound 4e (recorded in CDCl$_3$).
Figure S10. 100 MHz $^{13}\text{C}\{1\text{H}\}$ NMR spectrum of compound 4e (recorded in CDCl$_3$).
Figure S11. 400 MHz 1H NMR spectrum of compound 4f (recorded in CDCl$_3$).
Figure S12. 100 MHz 13C{1H} NMR spectrum of compound 4f (recorded in CDCl$_3$).
Figure S13. 400 MHz 1H NMR spectrum of compound 4g (recorded in CDCl$_3$).
Figure S14. 100 MHz $^{13}{^C}\{^1H\}$ NMR spectrum of compound 4g (recorded in CDCl$_3$).
Figure S15. 400 MHz 1H NMR spectrum of compound 4h (recorded in CDCl$_3$).
Figure S16. 100 MHz $^{13}\text{C}\{1\text{H}\}$ NMR spectrum of compound 4h (recorded in CDCl$_3$).
Figure S17. 400 MHz 1H NMR spectrum of compound 4i (recorded in CDCl$_3$).
Figure S18. 100 MHz 13C{1H} NMR spectrum of compound 4i (recorded in CDCl$_3$).
Figure S19. 400 MHz 1H NMR spectrum of compound 4j (recorded in CDCl$_3$).
Figure S20. 100 MHz 13C{1H} NMR spectrum of compound 4j (recorded in CDCl$_3$).
Figure S21. 400 MHz 1H NMR spectrum of compound 4k (recorded in CDCl$_3$).
Figure S22. 100 MHz 13C{1H} NMR spectrum of compound 4k (recorded in CDCl$_3$).
Figure S23. 400 MHz 1H NMR spectrum of compound 4l (recorded in CDCl$_3$).
Figure S24. 100 MHz 13C{1H} NMR spectrum of compound 4l (recorded in CDCl$_3$).
Figure S25. 400 MHz 1H NMR spectrum of compound 4m (recorded in CDCl$_3$).
Figure S26. 100 MHz 13C{1H} NMR spectrum of compound 4m (recorded in CDCl$_3$).
Figure S27. 400 MHz 1H NMR spectrum of compound 4n (recorded in DMSO-d_6).
Figure S28. 100 MHz $^{13}\text{C}\{1\text{H}\}$ NMR spectrum of compound 4n (recorded in DMSO-d_6).
Figure S29. 400 MHz 1H NMR spectrum of compound 4o (recorded in CDCl$_3$).
Figure S30. 100 MHz 13C{1H} NMR spectrum of compound 4o (recorded in CDCl3).
Figure S31. 400 MHz 1H NMR spectrum of compound 4p (recorded in CDCl$_3$).
Figure S32. 100 MHz 13C\{1H\} NMR spectrum of compound 4p (recorded in CDCl$_3$).
Figure S33. 400 MHz 1H NMR spectrum of compound 4q (recorded in CDCl$_3$).
Figure S34. 100 MHz 13C{1H} NMR spectrum of compound 4q (recorded in CDCl$_3$).
Figure S35. 400 MHz 1H NMR spectrum of compound 4r (recorded in CDCl$_3$).
Figure S36. 100 MHz 13C{1H} NMR spectrum of compound 4r (recorded in CDCl$_3$).
Figure S38. 400 MHz 1H NMR spectrum of compound 4s (recorded in DMSO-d_6).
Figure S37. 100 MHz 13C{1H} NMR spectrum of compound 4s (recorded in DMSO-d_6).
Figure S39. 400 MHz 1H NMR spectrum of compound 4t (recorded in DMSO-d_6).
Figure S40. 100 MHz 13C\{1H\} NMR spectrum of compound 4t (recorded in DMSO-d_6).
Figure S41. 400 MHz 1H NMR spectrum of compound 4u (recorded in DMSO-d_6).
Figure S42. 100 MHz 13C{1H} NMR spectrum of compound 4u (recorded in DMSO-d_6).
Figure S43. 400 MHz 1H NMR spectrum of compound 4v (recorded in CDCl$_3$).
Figure S44. 100 MHz 13C{1H} NMR spectrum of compound 4v (recorded in CDCl$_3$).
Figure S45. 400 MHz 1H NMR spectrum of compound 4x (recorded in CDCl$_3$).
Figure S46. 100 MHz 13C{1H} NMR spectrum of compound 4x (recorded in CDCl$_3$).