Supporting Information

Titanium oxide-based Optoelectronic Synapses with Visual Memory Synergistically Adjusted by Internal Emotions and Ambient Illumination

Yan-bo Guo^a, Yu-lin Liu^b, Qi-lai Chen^{*}, Gang Liu^{*}

^a Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

^b School of Materials Science and Engineering, Xiangtan University, Xiangtan,
411105, China

° School of Materials, Sun Yat-sen University, Shenzhen, 518107, China

* Corresponding author.

E-mail address: gang.liu@sjtu.edu.cn, chenqlai@mail.sysu.edu.cn

The absorbance spectrum of the TiO_{2-x} thin film was recorded in the range of 300-1000 nm, as shown in Fig. S1. The optical band gap (Eg) is estimated by the Tauc plot.

$$(\alpha hv)^{-1/n} = B(Eg - hv) \tag{1}$$

where α is the absorption coefficient, h is the Planck's constant, v is the frequency and B is a constant. The exponent n is directly related to the semiconductor type. The optical band gap of TiO_{2-x} is estimated to be 3.56eV which exhibits band gap direct transitions (n=1/2) [1,2]. The value is consistent with data in other reports [3].

Fig. S1 Absorbance spectra of the TiO_{2-x} based film. Inset: Band gap width fitted according to the Taut plot.

Fig. S2 The step height (a) and surface (b) image of the as-prepared TiO_{2-x} film measured by AFM.

The XPS survey spectrum shown in Fig. S3 reveals that the samples mainly

contain Ti, O, and C element.

Fig. S3 XPS spectra of survey spectrum

X-ray diffraction images of the surface and deep layers of TiO_{2-x} films show that the films contain TiO, TiO₂, Ti₂O₃, Ti₇O₁₃, Ti₃O₅ and TiO_{0.7207} [4-7]. This situation indicates that there are many defect states on the surface and deep layer of TiO_{2-x} film.

Fig. S4 X-ray diffraction images of the surface (a) and deep layers (b) of TiO_{2-x} film.

As shown in Fig. S5, the decayed EPSC curve can be fitted with the Kohlrausch stretched-exponential function shown below [8,9]:

$$I_t = \Delta I \times exp^{[m]} [-(t-\tau)^\beta] + I_\infty$$
⁽²⁾

where τ and β is the relaxation time and the stretch index ranged between 0 and 1, respectively, while I_{∞} is the resting current of 1.15 nA. The τ value is estimated to be ~15 s.

Fig. S5 The decayed EPSC curve fitted with a stretched exponential function.

Fig. S6 Visual event memory process with different internal emotion states. The internal emotion is triggered by 0.5 V and 0.7 V and 1.0 V, respectively. The same visual memory event is fixed to be triggered by the 365 nm light pulses with the intensity of 3.0 mW/cm², duration time of 2 s and interval time of 2 s.

Fig. S7 The current response under light pre-spikes with bias at 0.5 V.

Fig. S8 The current response under light pre-spikes with bias at 0.7 V.

Fig. S9 The current response under light pre-spikes with bias at 1.0 V.

Fig. S10 Visual event memory process with different ambient brightness. The intensities of ambient brightness are 1.2 mW/cm², 3.0 mW/cm² and 4.0 mW/cm², respectively. The emotion is fixed at 1.0 V (bias).

Fig. S11 The current response triggered by light pulses with ambient brightness of 1.2 mW/cm^2 light intensity.

Fig. S12 The current response triggered by light pulses with ambient brightness of 3.0 mW/cm^2 light intensity.

Fig. S13 The current response triggered by light pulses with ambient brightness of 4.0 mW/cm² light intensity.

Fig. S14 The excellent visual memory with decay time at 500 s with 4.0 mW/cm² brightness of the ambient illumination.

Fig. S15 (a) The compensatory effect of ambient illumination brightness on emotion and memory. (b) The function between ambient lighting time and emotion and

memory.

Table S1. Comparison between previous artificial photoelectronic synapse devices and this work.

						visual
Device structure	Light source	Light intensity (mW/cm ²)		Learning-		memory
			Multiple	forgetting	Optoelectronic	influenced
			memory	-	synapse array	by emotion
				relearning		and
						illumination
ITO/Nb:SrTiO ₃ [10]	visible	10-30	\checkmark	\checkmark	\checkmark	-
ITO/IGZO/Al ₂ O ₃ /Al[11]	UV	0.15	\checkmark	-	-	-
ITO/MO/SiO _x /IGZO/ SiO _x /SiN _x /MO [12]	UV	500	-	-	-	-
ITO/MoS ₂ /TiN _x O _{2-x} [13]	UV	0.54-3.56	\checkmark	\checkmark	\checkmark	-
ITO/SnO _x /ITO [14]	visible	4-16	\checkmark	\checkmark	√	-
ITO/TiO ₂ / <i>p</i> -Si (This work)	visible	0.5-3.0	\checkmark	\checkmark	\checkmark	\checkmark

Symbols " $\sqrt{}$ " and "-" denote demonstrated and non-demonstrated synaptic functions, respectively.

References

- D. Reyes-Coronado, G. Rodriguez-Gattorno, M. E. Esponosa-Pesqueira, C. Cab, R. Coss and G Oskam, *Nanotechnology*, 2008, **19**, 145605.
- [2] M. D. Shang, and W. Y. Ching, *Phys. Rev. B*, 1995, **51**, 13023.
- [3] J.-G. Li, T. Ishigaki and X. Sun, J. Phys. Chem. C, 2007, 111, 4969.
- [4] M. N. Islam, and J. Podder, Mat. Sci. in Semicon. Proc., 2021, 121, 105419.
- [5] M. Xiao, K. P. Musselman, W. W. Duley, and Y. N. Zhou, ACS Appl. Mater. Interfaces, 2017, 9, 4808–4817.
- [6] X. Yu, Y. Li, X. Hu, D. Zhang, Y. Tao, Z. Liu, Y. He, M. A. Haque, Z. Liu, T. Wu and Q. J. Wang, *Nat. Commun.*, 2018, 9, 4299.

- [7] J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen and T. Wu, *Adv. Mater.*, 2017, 29, 1603730.
- [8] L. Zhou, J. Y. Mao, Y. Ren, J. Q. Yang, S. R. Zhang, Y. Zhou, Q. Liao, Y. Zeng,
 H. Shan, Z. Xu, J. Fu, Y. Wang, X. Chen, Z. Lv, S. T. Han and V. A. L. Roy, *Small*, 2018, 14, 1800288.
- [9] C. J. Wang, Y. H. Liu, L. Q. Zhu, P. Feng, Y. Shi and Q. Wan, ACS Appl. Mater. Interfaces, 2016, 8, 9762.
- [10]S. Gao, G. Liu, H, Yang, C. Hu, Q. Chen, G. Gong, W. Xue, X. Yi, J. Shang and R. W. Li, ACS Nano, 2019, 13, 2634-2642.
- [11]S. Song, M. Kim, G. Yoo, S. M. Kwon, J. S. Heo, S. K. Park and Y. H. Kim, J. Alloys Compd., 2021, 857, 158027.
- [12] N. Duan, Y. Li, H. C. Chiang, J. Chen, W. Q. Pan, Y. X. Zhou, Y. C. Chien, Y. H. He, K. H. Xue, G. Liu, T. C. Chang and X. S. Miao, *Nanoscale*, 2019, **11**, 17590-17599.
- [13] W. Wang, S. Gao, Y. Li, W. Yue, H. Kan, C. Zhang, Z. Lou, L. Wang and G. Shen, Adv. Funct. Mater., 2021, 31, 2101201.
- [14]S. E. Ng, J. Yang, R. A. John, and N. Mathews, Adv. Funct. Mater., 2021, 31, 2100807.