Supporting Information

Asymmetric synthesis of chiral 1,2-oxazinane and hexahydropyridazin spirocyclic scaffolds by organocatalytic [4+2] cycloaddition

Heng-Zhi Tian^a, Qing-Gang Tang^a, Guo-Qiang Lin^{ab} and Xing-Wen Sun^{*ab}

^a Department of Chemistry, Fudan University, Shanghai 200433, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China E-mail: sunxingwen@fudan.edu.cn

Table of contents	page
1. General information	S1
2. General procedure	S1
3. Analytical data of the products	S 6
4. ¹ H and ¹³ C NMR spectra	S31
5. X-ray data of the product	S73

1. General Information

All reagents and all solvents were obtained from commercial suppliers and used without further purification except as indicated below. The silica gel (300-400 mesh) was used for column chromatography and TLC inspections were on silica gel GF 254 plates (0.25 mm layer thickness). NMR spectra were all recorded on a Bruker AM400 (400 MHz) spectrometer. Chemical shifts are reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR and chloroform-d (δ 77.16) for ¹³C NMR. Enantioselectivities were determined by high-performance liquid chromatography (HPLC) with an Aglilent-1260 intelligent uv/vis detector (λ = 214 nm, 220nm or 254 nm) and a Daicel IA. Optical rotations were measured in CH₂Cl₂ or CHCl₃ on a Pekin-Elmer 241MC automatic polarimeter. HRESIMS were recorded on an Agilent 6210 TOF LC/MS equipped with an electrospray ionization (ESI) probe operating in positive or negative ion mode.

2. General procedure

General procedure A: the synthesis of methyleneindolinones 1a-m:

Methyleneindolinones 1 were prepared according to the following representative procedure.²

General procedure B: the synthesis of γ -aminooxy- α , β -unsaturated ester 2a-c: γ -aminooxy- α , β -unsaturated ester 2 were prepared according to the following representative procedure.¹

General procedure C: the synthesis of fumaric acid monoester monoamide 6ac:

Fumaric acid monoester monoamide 6 were prepared according to the following representative methods.

To a solution of **S2** (10.0 mmol) in DCM (25 mL) was added EDCI (11.0mmol) and Hobt(11mmol) under ice bath. After 30 min, **S1**(10.0 mmol) was added into the solution, followed by the addition of $Et_3N(30.0 \text{ mmol})$. Then the reaction was warmed to room temperature and stirred overnight. After the reaction was complete (monitored by TLC), it was quenched with water. The mixture was extracted with DCM (30 mL x 2). The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 3/1) to afford the desired product **6a**.

General procedure D: the synthesis of Chiral 1,2-oxazinane Spirocyclic 4:

A solution of **2** (0.20 mmol), **1** (0.22 mmol) and Cat **3c** (0.05 mmol) in CH₂Cl₂ (0.4 mL) was stirred at room temperature (25 °C) for 48 h. The mixture was concentrated under reduced pressure and the residue was purified via flash chromatograph on silica gel (EtOAc/Petrol Ether = 1/3, v/v as eluent) to afford the desired product **4**.

General procedure E: the synthesis of Chiral Hexahydropyridazin Spirocycle 7:

A solution of **6** (0.20 mmol), **1** (0.24 mmol) and Cat.**3f** (0.03 mmol) in CH₂Cl₂ (0.2 mL) was stirred at -35 °C for 10-14d. The mixture was concentrated under reduced pressure and the residue was purified via flash chromatograph on silica gel (EtOAc/Petrol Ether = 1/3, v/v as eluent) to afford the desired product **7**.

Transformations of product 4a:

To a solution of **4a** (0.2 mmol) in DCM (2.0 mL) was added TFA (2.0 mmol). The resultant reaction solution was allowed to stir 2h at room temperature before the reaction was quenched by the addition of saturated aqueous Na₂CO₃ and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic fractions were dried over Na₂SO₄, filtered and concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 3/1) to afford the desired product **8**.

To a stirring solution of **4a** (0.1 mmol) in degassed dry methanol (1 mL) was added samarium iodide (0.1 M in THF, 2.5 equiv.) slowly at -78 °C. After stirring for 30 min, the solvent was warmed to room temperature, and saturated aqueous $Na_2S_2O_3$ (10 mL) were added. The aqueous layer was extracted with EA (10 ml x 3), and the organic layers were combined and dried over anhydrous sodium sulfate (Na₂SO₄). After filtration and concentration, the obtained crude product was purified by column chromatography (PE/EtOAc = 3/1) to afford **9**.

Transformations of product 7a:

To a solution of **7a** (0.2 mmol) in DCM (2.0 mL) was added TFA (1 ml). The resultant reaction solution was allowed to stir overnight at room temperature before the reaction was quenched by the addition of saturated aqueous Na_2CO_3 and extracted with CH_2Cl_2 (3 x 20 mL). The combined organic fractions were dried over Na_2SO_4 , filtered and concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 1/1) to afford the desired product **10**.

References:

- 1. Drelich, P.; Moczulski, M.; Albrecht, Ł. Org. Lett. 2017, 19, 3143-3146.
- 2. Tang, Q-G.; Cai, S-L.; Wang, C-C.; Lin, G-Q.; Sun, X-W. Org. Lett. 2020, 22, 3351-3355.

3. Analytical data of the products

1a, ¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (d, *J* = 7.8 Hz, 1H), 7.68 – 7.25 (m, 1H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.85 (d, *J* = 6.0 Hz, 2H), 1.59 (m, 18H).

1b, ¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (d, *J* = 9.0 Hz, 1H), 7.89 (dd, *J* = 8.8, 4.6 Hz, 1H), 7.13 (s, 1H), 6.90 (s, 1H), 1.65 (s, 9H), 1.57 (s, 9H).

1c, ¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.87 (d, *J* = 8.8 Hz, 1H), 7.39 (d, *J* = 8.8 Hz, 1H), 6.89 (s, 1H), 1.64 (s, 9H), 1.58 (s, 9H).

1d, ¹**H NMR** (400 MHz, CDCl₃) δ 8.81 (s, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.8 Hz, 1H), 6.88 (s, 1H), 1.70 – 1.55 (m, 18H).

1e, ¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.30 – 7.17 (m, 1H), 6.84 (s, 1H), 2.38 (s, 3H), 1.65 (s, 9H), 1.58 (s, 9H).

1f, ¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (d, *J* = 2.0 Hz, 1H), 7.80 (d, *J* = 8.8 Hz, 1H), 6.97 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.86 (s, 1H), 3.85 (s, 3H), 1.68 – 1.54 (m, 18H).

1g, ¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 8.34 (d, *J* = 9.0 Hz, 1H), 8.10 (d, *J* = 9.0 Hz, 1H), 7.00 (s, 1H), 1.67 – 1.59 (m, 18H).

1h, ¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (d, *J* = 8.4 Hz, 1H), 7.97 (s, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 6.86 (s, 1H), 1.65 (s, 9H), 1.57 (s, 9H).

1i, ¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (d, *J* = 8.4 Hz, 1H), 8.14 (s, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 6.88 (s, 1H), 1.65 (s, 9H), 1.58 (s, 9H).

1j, ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 2.4 Hz, 1H), 6.77 – 6.68 (m, 2H), 3.90 (s, 3H), 1.65 (s, 9H), 1.58 (s, 9H).

1k, ¹**H NMR** (400 MHz, CDCl₃) δ 8.44 (d, *J* = 7.0 Hz, 1H), , 7.18 (d, *J* = 7.8 Hz, 2H), 6.92 (s, 1H), 1.65 – 1.54 (m, 18H).

1I, ¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (d, *J* = 7.8 Hz, 1H), 7.30 – 7.17 (m, 1H), 7.11 (t, *J* = 7.8 Hz, 1H), 6.82 (s, 1H), 2.23 (s, 3H), 1.67 – 1.56 (m, 18H).

2a, ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 6.99 – 6.95 (m, 1H), 6.06 (d, *J* = 15.8 Hz, 1H), 4.52 (d, *J* = 5.2 Hz, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 1.49 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 3H).

2b, ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 6.87 (dt, *J* = 15.8, 5.2 Hz, 1H), 6.00 (d, *J* = 15.8 Hz, 1H), 4.49 (d, *J* = 4.4 Hz, 2H), 4.12 (dd, *J* = 14.2, 7.2 Hz, 2H), 1.86 (s, 3H), 1.37 – 1.04 (m, 3H).

2c, ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 7.77 (dd, *J* = 24.2, 7.4 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 2H), 6.97 (dt, *J* = 15.8, 5.4 Hz, 1H), 6.08 (d, *J* = 15.8 Hz, 1H), 4.64 (dd, *J* = 5.4, 1.2 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 1.36 – 1.18 (m, 3H).

6a, ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.11 (m, 5H), 6.93 – 6.71 (m, 2H), 4.36 – 4.14 (m, 2H), 4.04 (d, *J* = 8.8 Hz, 2H), 1.50 – 1.19 (m, 3H).

6b, ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 7.04 – 6.76 (m, 2H), 4.05 (s, 2H), 3.82 (s, 2H).

6c, ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.31 (m, 5H), 6.84 (dt, *J* = 15.4, 11.6 Hz, 2H), 4.25 – 4.18 (m, 2H), 4.05 (s, 2H), 1.77 – 1.59 (m, 2H), 1.55 – 1.34 (m, 2H), 1.10 – 0.90 (m, 3H).

4a, yellow oil, 106 mg, 90% yield, >20:1 dr, 95% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 8.03 min, t_{minor} = 4.71 min); [α]_D ²⁵ = -2.4 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 4.98 (s, 1H), 4.70 (t, *J* = 9.2, 1H), 4.07-3.94 (m, 2H), 3.62 (t, *J* = 10.0, 1H), 3.07-2.92 (m, 1H), 2.15 (dd, *J* = 16.0, 2.4 Hz, 1H), 1.68-1.57 (m, 10H), 1.46 (s, 9H), 1.16 (t, *J* = 7.2, 3H), 0.90 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 170.0, 165.6, 154.2, 148.7, 140.9, 129.4, 127.3, 125.2, 124.6, 114.8, 85.0, 82.4, 82.3, 70.6, 65.7, 61.0, 53.1, 36.7, 33.4, 28.1, 28.1, 28.0, 26.9, 14.0 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₄₂N₂O₁₀ [M+Na]⁺ 613.2732, found 613.2731.

4b, yellow oil, 66 mg, 53% yield, >20:1 dr, 96% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 18.80$ min, $t_{minor} = 7.86$ min); $[\alpha]_D^{25} = -0.5$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.55-7.46 (m, 2H), 7.44-7.31 (m, 4H), 7.17 (t, J = 7.6 Hz, 1H), 5.46 (dd, J = 21.6, 12.0 Hz, 2H), 5.00 (s, 1H), 4.71 (t, J = 8.8 Hz, 1H), 4.07-3,90 (m, 2H), 3.63 (t, J = 9.6 Hz, 1H), 3.09-2.97 (m, 1H), 2.18-2.07 (m, 1H), 1.67-1.57 (m, 1H), 1.48 (s, 10H), 1.15 (t, J = 7.2 Hz, 3H), 0.84 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 170.0, 165.5, 154.2,

150.4, 140.5, 134.7, 129.6, 128.7, 128.7, 128.3, 127.4, 125.6, 124.7, 115.0, 82.6, 82.5, 70.6, 69.1, 65.7, 61.0, 53.3, 36.9, 33.4, 28.2, 26.9, 14.0 ppm; **HRMS (ESI)** *m/z* calcd for C₃₃H₄₀N₂O₁₀ [M+Na]⁺ 647.2575, found 647.2572.

4c, yellow oil, 115 mg, 95% yield, >20:1 dr, 96% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 9.91 min, t_{minor} = 4.77 min); [α]_D ²⁵ = -0.5 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.03 (t, *J* = 8.8 Hz, 1H), 4.94 (s, 1H), 4.68 (t, *J* = 8.8 Hz, 1H), 4.00 (q, *J* = 6.8 Hz, 2H), 3.58 (t, *J* = 10.0 Hz, 1H), 2.97 (q, *J* = 9.6, 9.2 Hz, 1H), 2.19-2.06 (m, 1H), 1.64-1.55 (m, 10H), 1.44 (s, 9H), 1.15 (t, *J* = 7.2 Hz, 3H), 0.93 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 169.8, 165.3, 160.2 (d, *J* = 243.6 Hz), 154.0, 148.6, 136.8 (d, *J* = 2.8 Hz), 126.4 (d, *J* = 8.4 Hz), 116.1 (d, *J* = 7.8 Hz), 115.9 (d, *J* = 22.8 Hz), 115.0 (d, *J* = 25.6 Hz), 85.2, 82.6, 82.5, 70.6, 65.5, 61.0, 53.4, 36.7, 33.3, 28.1, 28.0, 26.9, 14.0 ppm; ¹⁹F NMR (377 MHz, CDCl₃) δ -116.4 ppm; **HRMS (ESI)** *m/z* calcd for C₃₀H₄₁FN₂O₁₀ [M+Na]⁺ 631.2637, found 631.2648.

Boc

4d, yellow oil, 113 mg, 90% yield, >20:1 dr, 95% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 10.74 min, t_{minor} = 4.25 min); [α]_D ²⁵ = 2.0 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 1H), 7.60 (s, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 4.94 (s, 1H), 4.68 (t, *J* = 8.8 Hz, 1H), 4.00 (q, *J* = 7.2 Hz, 2H), 3.59 (t, *J* = 10.0 Hz, 1H), 2.98 (q, *J* = 9.6 Hz, 1H), 2.17-2.06 (m, 1H), 1.66-1.57 (m, 10H), 1.45 (s, 9H), 1.16 (t, *J* = 6.8 Hz, 3H), 0.94 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 169.8, 165.4, 154.1, 148.5, 139.5, 131.0, 129.5, 127.3, 126.5, 116.1, 85.4, 82.7, 82.5, 70.6, 65.5, 61.1, 53.3, 36.8, 33.3, 28.2, 28.0, 27.0, 14.0 ppm; HRMS (ESI) *m*/*z* calcd for C₃₀H₄₁ClN₂O₁₀ [M+Na]⁺ 647.2342, found 647.2331.

4e, yellow oil, 124 mg, 93% yield, >20:1 dr, 96% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 7.64 min, t_{minor} = 4.21 min); [α]_D ²⁵ = 2.9 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.8 Hz, 1H), 7.72 (s, 1H), 7.46 (d, *J* = 8.8 Hz, 1H), 4.93 (s, 1H), 4.67 (t, *J* = 9.2 Hz, 1H), 3.99 (q, *J* = 7.2 Hz, 2H), 3.58 (t, *J* = 10.0 Hz, 1H), 3.04-2.87 (m, 1H), 2.17-2.03 (m, 1H), 1.67-1.55 (m, 10H), 1.44 (s, 9H), 1.15 (t, *J* = 7.2 Hz, 3H), 0.93 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 169.8, 165.3, 154.0, 148.4, 139.9, 132.4, 130.0, 126.8, 118.4, 1165, 85.4, 82.7, 82.5, 77.4, 77.1, 76.8, 70.5, 65.5, 61.1, 53.2, 36.7, 33.3, 28.1, 27.9, 26.9, 14.0 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₄₁BrN₂O₁₀ [M+Na]⁺ 691.1837; 693.1818, found 691.1826; 693.1812.

4f, yellow oil, 85 mg, 70% yield, >20:1 dr, 95% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 8.98$ min, $t_{minor} = 4.11$ min); $[\alpha]_D^{25} = -1.1$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0, 1H), 7.41 (s, 1H), 7.13 (d, J = 8.4 Hz, 1H), 4.97 (s, 1H), 4.69 (t, J = 8.8, 1H), 4.10-3.94 (m, 2H), 3.63 (t, J = 10.0, 1H), 2.99 (q, J = 10.2 Hz, 1H), 2.27 (s, 3H), 2.19-2.10 (m, 1H), 1.63 (m, 10H), 1.46 (s, 9H), 1.17 (t, J = 7.2, 3H), 0.91 (s, J = 1.7 Hz, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 170.1, 165.6, 154.3, 148.7, 138.4, 135.0, 129.7, 127.7, 124.5, 114.6, 84.8, 82.3, 82.3, 70.6, 65.7, 60.9, 53.1, 36.6, 33.4, 28.1, 28.04, 28.00, 27.97, 26.9, 21.0, 14.0 ppm; HRMS (ESI) *m/z* calcd for C₃₁H₄₄N₂O₁₀ [M+Na]⁺ 627.2888, found 627.2883.

4g, yellow oil, 85 mg, 69% yield, >20:1 dr, 95% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 14.63 min, t_{minor} = 4.23 min); [α]_D²⁵ = 1.5 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 9.2 Hz, 1H), 7.18 (s, 1H), 6.86 (d, *J* = 8.8 Hz, 1H), 4.98 (s, 1H), 4.70 (t, *J* = 8.8 Hz, 1H), 4.06-3.93 (m, 2H), 3.72 (s, 3H), 3.62 (t, *J* = 10.0 Hz, 1H), 2.97 (q, *J* = 10.0 Hz, 1H), 2.15 (dt, *J* = 16.0, 2.8 Hz, 1H), 1.67-1.57 (s, 10H), 1.46 (s, 9H), 1.16 (t, *J* = 7.2 Hz, 3H), 0.93 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 170.1, 165.5, 157.5, 154.1, 148.7, 134.1, 125.8, 115.8, 115.0, 112.8, 84.8, 82.34, 82.27, 70.6, 65.5, 61.0, 55.9, 53.4, 36.6, 33.4, 28.1, 28.0, 26.9, 14.0 ppm; HRMS (ESI) *m/z* calcd for C₃₁H₄₄N₂O₁₁ [M+Na]⁺ 643.2837, found 643.2830.

4h, yellow oil, 117 mg, 90% yield, >20:1 dr, 93% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 23.33 min, t_{minor} = 4.41 min); [α]_D ²⁵ = 5.3 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.28 (d, *J* = 9.2 Hz, 1H), 8.12 (d, *J* = 9.2 Hz, 1H), 4.98 (s, 1H), 4.72 (t, *J* = 9.2 Hz, 1H), 4.00 (q, *J* = 7.2 Hz, 2H), 3.63 (t, *J* = 10.2 Hz, 1H), 3.12-2.93 (m, 1H), 2.10 (dd, *J* = 16.2, 3.6 Hz, 1H), 1.65-1.56 (m, 10H), 1.46 (s, 9H), 1.15 (t, *J* = 7.2 Hz, 3H), 0.92 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 169.5, 165.2, 153.8, 148.2, 146.2, 145.1, 126.1, 125.8, 122.7, 115.1, 86.4, 83.0, 82.8, 77.4, 77.1, 76.8, 70.5, 65.4, 61.2, 53.2, 37.0, 33.2, 28.1, 28.0, 27.1, 14.0 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₄₁N₃O₁₂ [M+Na]⁺ 658.2582, found 658.2587.

Boc

4i, yellow oil, 114 mg, 91% yield, >20:1 dr, 95% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 10.23$ min, $t_{minor} = 4.80$ min); $[\alpha]_D^{25} = -3.2$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 4.92 (s, 1H), 4.67 (t, J = 8.4 Hz, 1H), 3.99 (q, J = 6.8 Hz, 2H), 3.55 (t, J = 10.0 Hz, 1H), 3.02-2.86 (m, 1H), 2.16-2.03 (m, 1H),

1.64-1.58 (m, 10H), 1.44 (s, 9H), 1.15 (t, *J* = 7.2 Hz, 3H), 0.93 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 169.8, 165.4, 154.1, 148.4, 141.8, 135.4, 128.3, 125.0, 122.9, 115.6, 85.5, 82.6, 82.5, 70.6, 65.6, 61.0, 52.9, 36.7, 33.3, 28.1, 28.0, 27.9, 27.0, 14.0 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₄₁ClN₂O₁₀ [M+Na]⁺ 647.2342, found 647.2344.

4j, yellow oil, 119 mg, 89% yield, >20:1 dr, 96% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 10.56$ min, $t_{minor} = 4.87$ min); $[\alpha]_D^{25} = -2.7$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 4.92 (s, 1H), 4.66 (t, J = 8.8 Hz, 1H), 3.99 (q, J = 6.8 Hz, 2H), 3.54 (t, J = 10.0 Hz, 1H), 3.00-2.89 (m, 1H), 2.16-2.03 (m, 1H), 1.64-1.57 (m, 10H), 1.43 (s, 9H), 1.15 (t, J = 7.2 Hz, 3H), 0.93 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 169.8, 165.3, 154.1, 148.4, 141.9, 128.6, 128.0, 123.5, 123.3, 118.3, 85.6, 82.6, 82.5, 70.5, 65.5, 61.0, 53.0, 36.6, 33.3, 28.1, 27.9, 27.0, 14.0 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₄₁BrN₂O₁₀ [M+Na]⁺ 691.1837, 693.1818; found 691.1833, 693.1817.

4k, yellow oil, 83 mg, 68% yield, >20:1 dr, 84% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 6.28$ min, $t_{minor} = 5.39$ min); $[\alpha]_D^{25} = -3.4$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.38 (m, 1H), 7.15-7.08 (m, 2H), 4.97 (s, 1H), 4.68 (t, J = 8.8 Hz, 1H), 4.10-3.92 (m, 2H), 3.62-3.47 (t, J = 9.6 Hz, 1H), 3.10-2.90 (m, 1H), 2.25-2.15 (m, 1H), 1.59 (s, 9H), 1.56-1.51 (m, 1H), 1.46 (s, 9H), 1.16 (t, J = 7.2 Hz, 3H), 0.98 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 169.9, 165.6, 154.2, 148.4 (d, J = 249.6 Hz), 146.9, 127.7 (d, J = 9.2 Hz), 127.5, 125.9 (d, J = 6.8 Hz), 123.2, 123.2, 117.7 (d, J = 20.0 Hz), 85.7, 82.7, 82.5, 70.6, 65.3, 61.0, 53.5, 36.8, 33.1, 28.1, 27.6, 27.1, 14.0 ppm; ¹⁹F NMR (377 MHz, CDCl₃) δ -120.4 ppm; HRMS (ESI) *m/z* calcd for C₃₀H₄₁FN₂O₁₀ [M+Na]⁺ 631.2637, found 631.2628.

4I, yellow oil, 51 mg, 46% yield, >20:1 dr, 87% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 5.77$ min, $t_{minor} = 5.28$ min); $[\alpha]_D^{25} = 1.6$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 5.16 (s, 1H), 4.72 (t, J = 8.8 Hz, 1H), 4.11-3.96 (m, 2H), 3.66 (t, J = 10.0 Hz, 1H), 3.18 (s, 3H), 3.06-2.92 (m, 1H), 2.19-2.08 (m, 1H), 1.68-1.62 (m, 10H), 1.49 (s, 9H), 1.19 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 170.0, 167.6, 154.1, 148.6, 140.7, 129.5, 126.7, 125.0, 124.2, 115.0, 85.1, 82.8, 70.4, 65.5, 61.0, 53.2, 51.8, 36.6, 33.3, 28.2, 28.1, 14.0 ppm; HRMS (ESI) *m*/*z* calcd for C₂₇H₃₆N₂O₁₀ [M+Na]⁺ 571.2262, found 571.2268.

4m, yellow oil, 65 mg, 58% yield, >20:1 dr, 94% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 5.68$ min, $t_{minor} = 4.87$ min); $[\alpha]_D^{25} = 2.1$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H), 5.12 (s, 1H), 4.72 (t, J = 8.8 Hz, 1H), 4.08-3.94 (m, 2H), 3.73-3.50 (m, 3H), 3.08-2.99 (m, 1H), 2.19-2.08 (m, 1H), 1.67-1.60 (m, 10H), 1.48 (s, 9H), 1.17 (t, J = 7.2 Hz, 3H), 0.72 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 170.0, 166.9, 154.1, 148.6, 140.8, 129.5, 126.9, 125.0, 124.1, 114.9, 85.1, 82.6, 70.4, 65.2, 61.2, 61.0, 53.1, 36.6, 33.3, 28.2, 28.1, 28.0, 28.0, 14.0, 13.2 ppm; HRMS (ESI) *m/z* calcd for C₂₈H₃₈N₂O₁₀ [M+Na]⁺ 585.2419, found 585.2429.

4n, yellow oil, 85 mg, 68% yield, >20:1 dr, 87% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 7.25$ min, $t_{minor} = 5.50$ min); $[\alpha]_D^{25} = 3.9$ (c = 1.0, CHCl₃).¹**H** NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.31-7.17 (m, 4H), 7.11 (t, J = 7.6 Hz, 1H), 6.97-6.85 (m, 2H), 5.20 (s, 1H), 4.79-4.64 (m, 2H), 4.40 (d, J = 12.0 Hz, 1H), 4.09-3.94 (m, 2H), 3.63 (t, J = 10.0 Hz, 1H), 3.07-2.91 (m, 1H), 2.17-2.04 (m, 1H), 1.61-1.55 (m, 10H), 1.48 (s, 9H), 1.17 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 170.0, 167.0, 154.1, 148.4, 140.6, 134.2, 129.5, 128.5, 128.4, 128.3, 126.6, 125.0, 123.9, 115.1, 84.9, 82.7, 70.4, 67.2, 65.1, 61.0, 53.03, 36.7, 33.2, 28.2, 28.0, 14.0 ppm; **HRMS (ESI**) *m/z* calcd for C₃₃H₄₀N₂O₁₀ [M+Na]⁺ 647.2575, found 647.2578.

40, yellow oil, 97 mg, 92% yield, >20:1 dr, 91% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 6.03 min, t_{minor} = 6.78 min); [α]_D ²⁵ = 2.2 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.54 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.35 (td, *J* = 8.0, 1.2 Hz, 1H), 7.15 (td, *J* = 7.6, 1.2 Hz, 1H), 5.31 (s, 1H), 4.67 (dd, *J* = 10.4, 8.0 Hz, 1H), 4.10-3.91 (m, 2H), 3.70 (t, *J* = 10.0 Hz, 1H), 3.01-2.84 (m, 1H), 2.24 (s, 3H), 2.17 (dd, *J* = 16.4, 3.6 Hz, 1H), 1.65-1.56 (m, 10H), 1.15 (t, *J* = 7.2 Hz, 3H), 0.88 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 170.1, 164.5, 148.6, 141.0, 129.6, 126.8, 125.1, 124.3, 115.0, 85.1, 82.8, 71.6, 63.0, 61.0, 52.6, 36.3, 33.2, 28.0, 27.1, 26.9, 20.3, 14.0 ppm. HRMS (ESI) *m/z* calcd for C₂₇H₃₄N₂O₉ [M+Na]⁺ 555.2313, found 555.2311.

4p, yellow oil, 94 mg, 82% yield, >20:1 dr, 66% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 8.72$ min, $t_{minor} = 6.26$ min); $[\alpha]_D^{25} = 3.2$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 1H), 7.90-7.69 (m, 2H), 7.60 (dd, J = 7.6, 1.2 Hz, 1H), 7.50-7.33 (m, 4H), 7.16 (td, J = 7.6, 1.2 Hz, 1H), 5.59 (br, 1H), 4.55 (br, 1H), 4.09-3.91 (m, 2H), 3.63 (t, J = 10.0 Hz,

1H), 3.08-2.93 (m, 1H), 2.20 (dd, J = 16.4, 3.6 Hz, 1H), 1.68-1.59 (m, 10H), 1.14 (t, J = 7.2 Hz, 3H),
0.93 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 170.0, 169.9, 164.6, 148.7, 141.0, 133.1, 131.2,
129.6, 128.4, 128.0, 126.9, 125.1, 124.3, 115.0, 85.1, 82.8, 71.6, 63.6, 61.0, 52.8, 36.3, 33.2, 28.0, 27.0,
14.0 ppm. HRMS (ESI) *m/z* calcd for C₂₇H₃₄N₂O₉ [M+Na]⁺ 617.2470, found 617.2476.

7a, white solid, m.p. =90.1-91.1°C, 88 mg, 74% yield, >20:1 dr, 91% ee (Chiralcel IA column, i-PrOH/nhexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 6.40 min, t_{minor} = 9.40 min); [α]_D ²⁵ = -14.6 (c = 1.0, CH₂Cl₂). ¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.58 (s, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.33 (m, 4H), 7.20 (d, *J* = 7.4 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 4.57 – 4.44 (m, 2H), 4.37 (s, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 3.77 (d, *J* = 10.4 Hz, 1H), 2.10 (m, 1H), 1.86 (d, *J* = 16.6 Hz, 1H), 1.65 (s, 9H), 1.22 (t, *J* = 7.0 Hz, 3H), 0.87 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.77, 172.33, 170.73, 166.98, 148.58, 140.16, 136.06, 129.66, 128.86, 128.75, 128.00, 125.31, 124.94, 124.53, 114.92, 85.15, 82.16, 69.69, 64.80, 60.88, 58.42, 42.84, 29.11, 27.98, 26.93, 14.01. HRMS (ESI) *m/z* calcd for C₃₂H₃₉N₃O₈ [M+H]⁺ 594.2810, found 594.2816.

7b, white solid, m.p. =86.7-87.6°C, 73 mg, 60% yield, >20:1 dr, 91% ee (Chiralcel IA column, i-PrOH/nhexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 5.40 min, t_{minor} = 7.30 min); [α]_D ²⁵ = 13.2 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.47 (d, *J* = 7.4 Hz, 2H), 7.42 –

7.31 (m, 3H), 7.07 (t, J = 8.8 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 4.49 (d, J = 4.6 Hz, 2H), 4.38 (s, 1H), 4.14 (q, J = 7.0 Hz, 2H), 3.78 (d, J = 10.4 Hz, 1H), 2.15 (dd, J = 16.2, 10.8 Hz, 1H), 1.88 (d, J = 16.2 Hz, 1H), 1.65 (s, 9H), 1.24 (t, J = 7.0 Hz, 3H), 0.95 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.31, 172.01, 170.57, 166.75, 160.12(J = 244.8), 148.58, 136.24, 135.92, 128.91, 128.84, 128.14, 126.77(J = 7.8), 116.28(J = 22.3), 116.26(J = 7.8), 112.54(J = 25.3), 85.42, 82.45, 69.68, 64.84, 61.02, 58.53, 42.89, 29.12, 28.01, 27.04, 14.04. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.7 ppm; HRMS (ESI) *m/z* calcd for C₃₂H₃₈F₁N₃O₈ [M+H]⁺ 612.2716, found 612.2719.

7c, white solid, m.p. =92.3-94.8°C, 80 mg, 64% yield, >20:1 dr, 91% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.70 min, t_{minor} = 5.48 min); [α]_D ²⁵ = 11.0 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.43 – 7.31 (m, 5H), 7.19 (s, 1H), 4.49 (s, 2H), 4.37 (s, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 3.78 (d, *J* = 10.6 Hz, 1H), 2.17 (dd, *J* = 16.0, 10.6 Hz, 1H), 1.88 (d, *J* = 16.2 Hz, 1H), 1.65 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.96 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.07, 171.89, 170.56, 166.71, 148.46, 138.77, 135.92, 130.99, 129.78, 128.90, 128.83, 128.14, 126.83, 124.77, 116.17, 85.60, 82.53, 69.77, 64.82, 61.04, 58.39, 42.88, 29.12, 28.00, 27.04, 14.05. HRMS (ESI) *m/z* calcd for C₃₂H₃₈Cl₁N₃O₈ [M+H]⁺ 628.2420, found 628.2421.

7d, white solid, m.p. =96.5-98.3 °C, 81 mg, 61% yield, >20:1 dr, 91% ee (Chiralcel IA column, i-PrOH/nhexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.63 min, t_{minor} = 5.37 min); [α]_D ²⁵ = 8.6 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.6 Hz, 1H), 7.51 – 7.46 (m, 4H), 7.38 – 7.28 (m, 4H), 4.53 – 4.45 (m, 2H), 4.36 (s, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.78 (d, *J* = 10.4 Hz, 1H), 2.18 (dd, *J* = 16.2, 10.8 Hz, 1H), 1.87 (d, *J* = 16.2 Hz, 1H), 1.65 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.95 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.94, 171.87, 170.55, 166.72, 148.43, 139.29, 135.93, 132.74, 128.91, 128.83, 128.13, 127.51, 127.20, 118.42, 116.54, 85.61, 82.55, 69.75, 64.79, 61.04, 58.32, 42.89, 29.13, 28.00, 27.04, 14.05. HRMS (ESI) *m/z* calcd for C₃₂H₃₈Br₁N₃O₈ [M+H]⁺ 672.1915, found 672.1917.

7e, white solid, m.p. =86.1-88.7°C, 109 mg, 90% yield, >20:1 dr, 83% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.16 min, t_{minor} = 5.29 min); $[\alpha]_D^{25}$ = 6.6 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 1H), 7.48 (d, *J* = 7.4 Hz, 2H), 7.42 – 7.31 (m, 4H), 7.15 (d, *J* = 8.4 Hz, 1H), 6.99 (s, 1H), 4.50 (s, 2H), 4.38 (s, 1H), 4.14 (q, *J* = 6.8 Hz, 2H), 3.77 (d, *J* = 10.6 Hz, 1H), 2.26 (s, 3H), 2.15 (dd, *J* = 16.4, 10.8 Hz, 1H), 1.89 (d, *J* = 16.4 Hz, 1H), 1.66 (s, 9H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.90 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.98, 172.33, 170.80, 167.05, 148.68, 137.82, 136.16, 135.12, 130.10, 128.90, 128.78, 128.04, 125.03, 124.95, 114.76, 84.99, 82.16, 69.88, 64.89, 60.91, 58.48, 42.93, 29.19, 28.04, 26.93, 21.02, 14.05. HRMS (ESI) *m/z* calcd for C₃₃H₄₁N₃O₈ [M+H]⁺ 608.2966, found 608.2976.

7f, white solid, m.p. =84.0-86.3 °C, 92 mg, 74% yield, >20:1 dr, 90% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.50 min, t_{minor} = 5.35 min); [α]_D ²⁵ = 6.6 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 7.2 Hz, 2H), 7.42 – 7.31 (m, 4H), 6.88 (d, *J* = 9.0 Hz, 1H), 6.76 (s, 1H), 4.51 (s, 2H), 4.39 (s, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.78 (d, *J* = 10.6 Hz, 1H), 3.72 (s, 3H), 2.16 (dd, *J* = 16.4, 11.0 Hz, 1H), 1.89 (d, *J* = 16.6 Hz, 1H), 1.66 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H), 0.94 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.88, 172.35, 170.75, 167.00, 157.37, 148.70, 136.11, 133.38, 128.92, 128.80, 128.06, 126.13, 115.92, 115.03, 110.46, 84.96, 82.21, 69.80, 64.84, 60.93, 58.78, 55.68, 42.95, 29.16, 28.05, 27.02, 14.05. **HRMS (ESI)** *m/z* calcd for C₃₃H₄₁N₃O₉ [M+H]⁺ 624.2916, found 624.2922.

Boc

7g, white solid, m.p. =105.1-105.7°C, 62 mg, 49% yield, >20:1 dr, 55% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 7.21 min, t_{minor} = 5.99 min); [α]_D ²⁵ = 3.4 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, *J* = 9.0, 2.4 Hz, 1H), 8.09 (m, 2H), 7.48 (d, *J* = 6.6 Hz, 2H), 7.44 - 7.31 (m, 3H), 4.55 - 4.48 (m, 2H), 4.41 (s, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.83 (dd, *J* = 10.6, 3.2 Hz, 1H), 2.20 - 2.04 (m, 1H), 1.88 (dd, *J* = 16.2, 3.2 Hz, 1H), 1.68 (s, 9H), 1.25 (t, *J* = 7.2

Hz, 3H), 0.94 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.61, 171.44, 170.26, 166.44, 148.16, 145.41, 144.91, 135.67, 128.92, 128.29, 126.45, 125.97, 120.05, 115.14, 86.56, 82.80, 69.78, 64.90, 61.18, 58.17, 42.98, 29.04, 27.96, 27.09, 14.02. **HRMS (ESI)** *m/z* calcd for C₃₂H₃₈N₄O₁₀ [M+H]⁺ 639.2661, found 639.2670.

7h, white solid, m.p. =180.5-182.1°C, 73 mg, 60% yield, >20:1 dr, 91% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.64 min, t_{minor} = 6.08 min); [α]_D ²⁵ = -15.2 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 10.0 Hz, 1H), 7.59 (s, 1H), 7.46 (d, *J* = 7.4 Hz, 2H), 7.42 – 7.27 (m, 3H), 7.20 – 7.13 (m, 1H), 6.81 (t, *J* = 8.6 Hz, 1H), 4.54 – 4.45 (m, 2H), 4.35 (s, 1H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.77 (d, *J* = 10.4 Hz, 1H), 2.14 (dd, *J* = 16.2, 10.6 Hz, 1H), 1.85 (d, *J* = 16.2 Hz, 1H), 1.65 (s, 9H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.94 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ 174.56, 172.21, 170.62, 166.90, 163.39(*J* = 246.1), 148.35, 141.50(*J* = 12.4), 135.96, 128.87, 128.82, 128.10, 125.88(*J* = 9.5), 120.45, 111.81(*J* = 22.2), 103.93(*J* = 29.8), 85.71, 82.34, 69.76, 64.77, 60.98, 58.15, 42.91, 29.11, 27.98, 27.07, 14.04. ¹⁹F **NMR** (377 MHz, CDCl₃) δ -108.6 ppm; **HRMS (ESI)** *m/z* calcd for C₃₂H₃₈F₁N₃O₈ [M+H]⁺ 612.2716, found 612.2727.

7i, white solid, m.p. =187.2-188.9°C, 65 mg, 52% yield, >20:1 dr, 50% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.51 min, t_{minor} = 5.89 min); [α]_D ²⁵ = -14.0 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.46 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.33 (m, 4H), 7.13 (s, 2H), 4.52 – 4.40 (m, 2H), 4.36 (s, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.78 (dd, *J* = 10.6, 3.2 Hz, 1H), 2.14 (dd, *J* = 16.2, 10.6 Hz, 1H), 1.86 (dd, *J* = 16.2, 3.2 Hz, 1H), 1.66 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.95 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.27, 172.08, 170.58, 166.79, 148.37, 141.20, 135.94, 135.79, 128.87 128.84, 128.14, 125.48, 125.25, 123.36, 115.75, 85.77, 82.50, 69.83, 64.82, 61.01, 58.23, 42.83, 29.11, 27.98, 27.06, 14.04. HRMS (ESI) *m/z* calcd for C₃₂H₃₈Cl₁N₃O₈ [M+H]⁺ 628.2420, found 628.2419.

7j, white solid, m.p. =187.3-189.3°C, 56 mg, 52% yield, >20:1 dr, 60% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.56 min, t_{minor} = 5.99 min); [α]_D ²⁵ = -13.8 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.44 (d, *J* = 8.3 Hz, 3H), 7.40 – 7.29 (m, 3H), 7.25 (s, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 4.51 – 4.40 (m, 2H), 4.33 (s, 1H), 4.12 (q, *J* = 6.8 Hz, 2H), 3.76 (d, *J* = 10.4 Hz, 1H), 2.12 (dd, *J* = 16.2, 10.8 Hz, 1H), 1.84 (d, *J* = 16.2 Hz, 1H), 1.64 (s, 9H), 1.22 (t, *J* = 7.0 Hz, 3H), 0.93 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.13, 172.07, 170.55, 166.77, 148.32, 141.24, 135.87, 128.84, 128.80, 128.19, 128.10, 125.73, 123.87, 123.58, 118.48, 85.75, 82.50, 69.65, 64.75, 60.99, 58.25, 42.69, 29.07, 27.94, 27.01, 14.01. HRMS (ESI) *m*/z calcd for C₃₂H₃₈Br₁N₃O₈ [M+H]⁺ 672.1915, found 672.1913.

Boc

7k, white solid, m.p. =105.3-106.4°C, 99 mg, 80% yield, >20:1 dr, 70% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 4.99 min, t_{minor} = 6.66 min); [α]_D ²⁵ = 12.0 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.42 – 7.30 (m, 4H), 7.09 (d, *J* = 8.4 Hz, 1H), 6.63 (d, *J* = 8.4 Hz, 1H), 4.49 (s, 2H), 4.35 (s, 1H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.75 (d, *J* = 10.6 Hz, 1H), 2.15 (dd, *J* = 16.0, 10.6 Hz, 1H), 1.88 (d, *J* = 16.2 Hz, 1H), 1.66 (s, 9H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.94 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.20, 172.47, 170.83, 167.15, 160.96, 148.57, 141.31, 136.14, 128.90, 128.78, 128.03, 125.30, 116.60, 110.03, 102.40, 85.17, 82.11, 70.03, 64.87, 60.89, 58.10, 55.65, 43.07, 29.18, 28.03, 27.10, 14.05. **HRMS (ESI)** *m/z* calcd for C₃₃H₄₁N₃O₉ [M+H]⁺ 624.2916, found 624.2932.

71, white solid, m.p. =82.1-83..4°C, 76 mg, 63% yield, >20:1 dr, 85% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 6.94 min, t_{minor} = 11.66 min); [α]_D ²⁵ = 16.0 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.2 Hz, 2H), 7.42 – 7.31 (m, 4H), 7.21 – 7.09 (m, 2H), 7.01 (d, *J* = 7.0 Hz, 1H), 4.51 (q, *J* = 13.2 Hz, 2H), 4.38 (s, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.82 (d, *J* = 10.6 Hz, 1H), 2.08 (dd, *J* = 16.2, 10.2 Hz, 1H), 1.90 (d, *J* = 16.2 Hz, 1H), 1.63 (s, 9H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.98 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.10, 172.00, 170.59, 167.00, 146.99(*J* = 29.2), 136.00, 128.87, 128.83, 128.26, 128.11, 126.90(*J* = 8.8), 126.22(*J* = 6.7), 120.63, 118.03(*J* = 20.0), 85.88, 82.54, 69.40, 64.37, 61.00, 58.99, 42.90, 28.91, 27.64, 27.21, 14.03. ¹⁹F NMR (377 MHz, CDCl₃) δ -119.8 ppm; **HRMS (ESI)** *m/z* calcd for C₃₂H₃₈F₁N₃O₈ [M+H]⁺ 612.2716, found 612.2721.

7m, white solid, m.p. =77.3-75.8°C, 40 mg, 33% yield, >20:1 dr, 20% ee. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.2 Hz, 2H), 7.40 – 7.32 (m, 3H), 7.18 – 7.11 (m, 1H), 7.05 – 6.99 (m, 2H), 4.59 – 4.43 (m, 2H), 4.37 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.79 (dd, J = 10.6, 3.2 Hz, 1H), 2.26 (s, 3H), 2.08 (dd, J = 16.6, 10.6 Hz, 1H), 1.88 (dd, J = 16.6, 3.2 Hz, 1H), 1.65 (s, 9H), 1.24 (t, J = 7.2 Hz, 3H), 0.94 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 175.44, 172.25, 170.91, 167.26, 148.83, 138.45, 136.28, 132.60, 128.79, 128.00, 125.92, 124.99, 122.81, 122.42, 85.54, 82.30, 69.53, 64.44, 60.86, 58.54, 43.01, 28.91, 27.74, 27.16, 19.43, 14.04. HRMS (ESI) *m/z* calcd for C₃₃H₄₁N₃O₈ [M+H]⁺ 608.2966, found 608.2965.

Boc

Мe

7n, white solid, m.p. =170.6-172.3°C, 36 mg, 33% yield, >20:1 dr, 85% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 210 nm, t_{major} = 9.29 min, t_{minor} = 12.52 min); [α]_D ²⁵ = -19.4 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 7.0 Hz, 2H), 7.42 – 7.31 (m, 5H), 7.12 (s, 2H), 4.63 – 4.43 (m, 3H), 4.14 (q, *J* = 6.8 Hz, 2H), 3.90 (d, *J* = 10.4 Hz, 1H), 3.05 (s, 3H), 2.20 (dd, *J* = 16.6, 11.0 Hz, 1H), 1.84 (d, *J* = 16.6 Hz, 1H), 1.69 (s, 9H), 1.24 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.94, 172.37, 170.69, 168.76, 148.57, 139.83, 135.97, 129.73, 128.97, 128.84, 128.13, 125.05, 124.83, 124.03, 114.96, 85.37, 69.94, 63.91, 60.95, 58.87, 51.53, 42.61, 29.34, 28.08, 14.03. **HRMS (ESI)** *m/z* calcd for C₂₉H₃₃N₃O₈ [M+H]⁺ 552.2340, found 552.2330.

Boc

70, white solid, m.p. =158.5-160.5°C, 67 mg, 60% yield, >20:1 dr, 91% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 8.15 min, t_{minor} = 11.62 min); [α]_D ²⁵ = -14.2 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.2 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.41 – 7.29 (m, 5H), 7.18 – 7.06 (m, 2H), 4.60 – 4.43 (m, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 3.86 (d, *J* = 8.6 Hz, 1H), 3.69 – 3.56 (m, 1H), 3.41 – 3.29 (m, 1H), 2.16 (dd, *J* = 16.6, 10.6 Hz, 1H), 1.84 (d, *J* = 16.2 Hz, 1H), 1.67 (s, 9H), 1.22 (t, *J* = 7.2 Hz, 3H), 0.68 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.93, 172.33, 170.71, 168.26, 148.55, 140.01, 136.00, 129.74, 128.96, 128.84, 128.12, 125.15, 124.80, 124.24, 114.94, 85.32, 69.81, 64.28, 61.01, 60.95, 58.74, 42.73, 29.27, 28.06, 14.04, 13.19. **HRMS (ESI)** *m/z* calcd for C₃₀H₃₅N₃O₈ [M+H]⁺ 566.2497, found 566.2494.

7p, white solid, m.p. =64.7-65.8°C, 68 mg, 55% yield, >20:1 dr, 92% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 7.76 min, t_{minor} = 11.47 min); [α]_D ²⁵ = 2.8 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 1H), 7.45 (m, 3H), 7.41 – 7.22 (m, 7H), 7.14 (m, 2H), 6.89 (d, *J* = 6.8 Hz, 2H), 4.70 (d, *J* = 11.9 Hz, 1H), 4.64 – 4.43 (m, 3H), 4.16 – 4.08 (m,

3H), 3.88 (d, J = 10.6 Hz, 1H), 2.15 (dd, J = 16.0, 11.0 Hz, 1H), 1.83 (d, J = 16.4 Hz, 1H), 1.62 (s, 9H), 1.23 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.77, 172.33, 170.68, 168.25, 154.47, 148.37, 139.84, 135.99, 134.14, 129.78, 128.94, 128.85, 128.46, 128.38, 128.13, 125.10, 124.62, 124.06, 115.16, 85.18, 69.87, 67.07, 64.16, 60.95, 58.80, 42.86, 29.21, 28.03, 14.03. **HRMS (ESI)** *m/z* calcd for C₃₅H₃₇N₃O₈ [M+H]⁺ 628.2653, found 628.2648.

7q, white solid, m.p. =90.2-91.5°C, 86 mg, 75% yield, >20:1 dr, 90% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 7.16 min, t_{minor} = 10.50 min); [α]_D ²⁵ = 6.6 (c = 1.0, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 3H), 7.42 – 7.30 (m, 4H), 7.21 (d, *J* = 7.4 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 4.54 – 4.46 (m, 2H), 4.38 (s, 1H), 3.77 (d, *J* = 10.4 Hz, 1H), 3.67 (s, 3H), 2.15 (dd, *J* = 16.2, 10.6 Hz, 1H), 1.88 (d, *J* = 16.2 Hz, 1H), 1.66 (s, 9H), 0.89 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.73, 172.31, 171.28, 166.99, 148.62, 140.23, 136.06, 129.75, 128.92, 128.81, 128.07, 125.35, 124.91, 124.57, 114.96, 85.20, 82.25, 69.76, 64.84, 58.45, 52.02, 42.98, 28.96, 28.03, 26.98. **HRMS (ESI)** *m/z* calcd for C₃₁H₃₇N₃O₈ [M+H]⁺ 580.2653, found 580.2659.

7r, white solid, m.p. =98.5-100.4°C, 86 mg, 70% yield, >20:1 dr, 90% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, λ = 220 nm, t_{major} = 5.71 min, t_{minor} = 6.37 min); $[\alpha]_D^{25}$ = 5.6 (c = 1.0,

CH₂Cl₂). ¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 1H), 7.49 – 7.29 (m, 7H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 4.56 – 4.46 (s, 2H), 4.38 (s, 1H), 4.08 (t, *J* = 6.4 Hz, 2H), 3.79 (d, *J* = 10.6 Hz, 1H), 2.12 (dd, *J* = 16.2, 11.0 Hz, 1H), 1.88 (d, *J* = 16.4 Hz, 1H), 1.66 (s, 9H), 1.62 – 1.54 (m, 2H), 1.42 – 1.30 (m, 2H), 0.98 – 0.81 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 174.82, 172.35, 170.81, 167.00, 148.63, 140.22, 136.14, 129.71, 128.87, 128.79, 128.05, 125.35, 124.97, 124.59, 114.97, 85.19, 82.22, 69.91, 64.90, 64.83, 58.49, 42.92, 30.52, 29.14, 28.03, 26.99, 19.06, 13.66. HRMS (ESI) *m*/*z* calcd for C₃₄H₄₃N₃O₈ [M+H]⁺ 622.3123, found 622.3117.

8, yellow oil, 59 mg, 78% yield, 94% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 13.46$ min, $t_{minor} = 10.71$ min). ¹H NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.38-7.17 (m, 1H), 7.11-6.91 (m, 2H), 5.97 (s, 1H), 4.29 (s, 1H), 4.18 (dd, J = 11.6, 4.8 Hz, 1H), 4.00 (q, J = 7.2 Hz, 2H), 3.89 (t, J = 11.6 Hz, 1H), 2.91-2.80 (m, 1H), 2.00 (dd, J = 16.4, 3.2 Hz, 1H), 1.55 (dd, J = 16.4, 11.2 Hz, 1H), 1.14 (t, J = 7.2 Hz, 3H), 1.06 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 171.1, 166.4, 142.0, 128.9, 127.8, 126.4, 122.5, 110.1, 83.3, 69.7, 64.3, 60.8, 52.6, 39.3, 31.4, 27.4, 27.2, 14.1 ppm. HRMS (ESI) *m/z* calcd for C₂₇H₃₄N₂O₉ [M+H]⁺ 391.1864, found 391.1867.

9, yellow oil, 37 mg, 76% yield, 95% ee (Chiralcel IA column, i-PrOH/n-hexane = 10/90, 1.0 mL/min, $\lambda = 210$ nm, $t_{major} = 24.62$ min, $t_{minor} = 27.98$ min). ¹**H NMR** (400 MHz, CDCl₃) δ 9.13 (s, 1H), 7.69-7.48 (m, 1H), 7.38-7.16 (m, 1H), 7.13-6.93 (m, 2H), 4.94 (s, 1H), 4.72 (dd, J = 10.0, 7.6 Hz, 1H), 4.02 (qd, J = 7.2, 2.8 Hz, 2H), 3.67 (t, J = 10.0 Hz, 1H), 3.09-2.87 (m, 1H), 2.27 (dd, J = 16.0, 3.6 Hz, 1H), 1.65 (dd, J = 16.0, 11.2 Hz, 1H), 1.49 (s, 9H), 1.17 (t, J = 7.2 Hz, 3H), 0.96 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 170.7, 166.2, 154.6, 142.4, 129.4, 128.1, 126.0, 123.4, 110.3, 82.5, 82.4, 71.2, 65.1, 61.0, 53.2, 35.9, 33.3, 28.3, 27.2, 14.2 ppm. HRMS (ESI) *m/z* calcd for C₂₅H₃₄N₂O₈ [M+Na]⁺ 513.2207, found 513.2204.

10, white solid, 64 mg, 82% yield, 91% ee (Chiralcel IA column, i-PrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 210 \text{ nm}, t_{\text{major}} = 11.07 \text{ min}, t_{\text{minor}} = 14.01 \text{ min}); [\alpha]_D^{25} = 13.2 (c = 1.0, \text{CHCl}_3).$ ¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.43 – 7.29 (m, 5H), 7.24 (d, *J* = 7.0 Hz, 2H), 7.11 – 7.02 (m, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 4.29 (d, *J* = 13.0 Hz, 1H), 4.18 (d, *J* = 13.0 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.88 (dd, *J* =

10.0, 3.8 Hz, 1H), 3.43 (d, J = 13.0 Hz, 1H), 3.25 (d, J = 13.0 Hz, 1H), 2.38 (dd, J = 16.4, 10.0 Hz, 1H), 1.79 (dd, J = 16.4, 3.8 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 178.98, 171.49, 171.29, 140.23, 135.65, 129.18, 129.11, 129.03, 128.73, 128.09, 124.94, 123.39, 110.15, 62.31, 60.72, 59.48, 53.83, 41.09, 30.48, 14.00. **HRMS (ESI)** *m*/*z* calcd for C₂₂H₂₃N₃O₄ [M+H]⁺ 394.1761, found 394.1767.

4. ¹H and ¹³C NMR spectra

S32

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

S36

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---- 120.448

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270

Т

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270

5. X-ray data of the product

r

Figure S1, X-ray crystal structure of 8 (The crystal was obtained by slow evaporation of the solution of diethyl ether and hexane)

lable S1. Crystal data and structure refinement for CCDC 21

Identification code	20190417tangQG	
Chemical formula	$C_{20}H_{26}N_2O_6$	
Formula weight	390.43 g/mol	
Temperature	274(2) K	
Wavelength	1.54178 Å	
Crystal size	0.070 x 0.100 x 0.300 mm	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 11.2293(6) Å	$\alpha=90^{\circ}$
	b = 8.1032(5) Å	$\beta = 101^\circ$
	c = 11.2293(6) Å	$\gamma=90^{\circ}$
Volume	1004.55(10) Å ³	
Z	2	
Density (calculated)	1.291 g/cm ³	
Absorption coefficient	0.793 mm ⁻¹	
F(000)	416	
Theta range for data collection	4.00 to 72.85°	
Index ranges	-13<=h<=13, -10<=k<=7, -13<=l<=13	

Reflections collected	9600		
Independent reflections	3056 [R(int) = 0.0591]		
Max. and min. transmission	0.9470 and 0.7970		
Structure solution technique	direct methods		
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)		
Function minimized	$\Sigma w(Fo^2 - Fc^2)^2$		
Data / restraints / parameters	3056 / 1 / 265		
Goodness-of-fit on F2	1.091		
Final R indices	2984 data; I>2 σ (I) R1 = 0.0434, wR2 = 0.1008		
	all data	R1 = 0.0439, wR2 = 0.1016	
Waighting schome	$w{=}1/[\sigma^2(F_o{}^2){+}(0.0651P)^2{+}0.0605P]$		
weighting scheme	where $P = (F_o^2 + 2F_c^2)/3$		
Absolute structure parameter	-0.02(14)		
Largest diff. peak and hole	0.334 and -0.256 eÅ ⁻³		
R.M.S. deviation from mean	0.058 eÅ ⁻³		

Figure S2, X-ray crystal structure of 7a (The crystal was obtained by slow evaporation of the solution of diethyl ether and hexane)

Identification code	20210409THZ_TBUDH		
Chemical formula	C32H39N3O8		
Formula weight	593.66 g/mol		
Temperature	293(2) K		
Wavelength	1.54184 Å		
Crystal size	0.100 x 0.130 x 0.200 mm		
Crystal system	monoclinic		
Space group	P 1 21 1		
Unit cell dimensions	a = 12.891(6) Å $\alpha = 90$) o	
	$b = 8.629(5) \text{ Å } \beta = 11$	11.57(2)°	
	c = 15.510(7) Å $\gamma = 90$	o	
Volume	1604.5(14) Å ³		
Z	2		
Density (calculated)	1.229 g/cm ³		
Absorption coefficient	0.730 mm ⁻¹		
F (000)	632		
Theta range for data collection	3.69 to 65.01°		
Index ranges	-15<=h<=15, -10<=k<=10, -18<=l<=18		
Reflections collected	19779		
Independent reflections	5367 [R(int) = 0.0869]		
Coverage of independent reflections	99.9%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.7526 and 0.6068		
Structure solution technique	direct methods		
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)		
Refinement method	Full-matrix least-squares on F2		
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$		
Data / restraints / parameters	5367 / 1 / 398		
Goodness-of-fit on F2	1.062		
Final R indices	4848 data; I>2σ(I)	R1 = 0.0332, $wR2 = 0.0803$	
	all data	R1 = 0.0474, wR2 = 0.0836	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0338) where P=(F_o^2+2F_c^2)/3	3P) ² +0.1266P]	
Absolute structure parameter	0.14(11) S75		

Table S2. Crystal data and structure refinement for CCDC 2153627.

Largest diff. peak and hole

0.159 and -0.150 eÅ⁻³ 0.037 eÅ⁻³

R.M.S. deviation from mean