Vanadium nitride nanoparticle decorated N-doped carbon

nanotube/N-doped carbon nanosheet hybrids via a C₃N₄ self-

sacrificing method for electrochemical capacitors

Jinghua Liu,^a Xiong He, *^a Fei Guo, ^a Baosheng Liu, ^a Zijun Sun, ^a Li Zhang, ^a Haixin Chang *^b

^aSchool of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China.

^bQuantum-Nano Matter and Device Lab, State Key Laboratory of Material

Processing and Die & Mould Technology, School of Materials Science and

Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

*Corresponding author: Tel.: +86-0772-2686550

E-mail address: <u>hexiong@gxust.edu.cn</u>, <u>hxchang@hust.edu.cn</u>

Fig. S2 XRD pattern of VN/NCNT/NCN-2 electrode film after 5000-cycle charge-discharge tests

supercupiertor electrone materialis				
Materials	Electrolytes	Current density	Cyclic cycles	Cs retention
VN hollow fiber [1]	2 М КОН	5 A g ⁻¹	1000 cycles	54%
VN nanoflake [2]	2 M KOH	1 A g ⁻¹	1000 cycles	66%
Mesoporous VN [3]	6 M KOH	10 A g ⁻¹	5000 cycles	83%
VN/N-graphene-700 [4]	2 M KOH	2 A g ⁻¹	2000 cycles	73.9%
VN nanoparticles/carbon sheet [5]	1 M KOH	1 A g ⁻¹	5000 cycles	75.8%
VN/PEDOT [6]	KOH/PVA	10 A g ⁻¹	5000 cycles	91.5%
Graphene-NiFe2O4 nanocomposite [7]	2 M KOH	8 A g ⁻¹	10000 cycles	94%
Graphene-NiCo2O4 Nanorod [8]	2 М КОН	8 A g ⁻¹	10000 cycles	94%
this work	6 М КОН	10 A g ⁻¹	5000 cycles	91%

 Table S1 Summary of the cyclic stability of recently reported VN, vanadium-based/carbon hybrids, other

 supercapacitor electrode materials

References

- J. X. Zhao, B. Liu, S. Xu, J. Yang and Y. Lu, Fabrication and electrochemical properties of porous VN hollow nanofibers, J. Alloy. Compd., 2015, 651, 785-792.
- [2] Z. Q. Hou, K. Guo, H. Q. Li and T. Y. Zhai, Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors, Crystengcomm, 2016, 18, 3040-3047.
- [3] H. M. Lee, G. H. Jeong, S. W. Kim and C. K. Kim, Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors, Applied Surface Science, 2017, 400, 194-199.
- [4] J. H. Liu, F. F. Li, W. W. Liu and X. Li, Effect of calcination temperature on the microstructure of vanadium nitride/nitrogen-doped graphene nanocomposites as anode materials in electrochemical capacitors, Inorganic Chemistry Frontiers, 2019, 6, 164-171.
- [5] H. Y. Wu, M. L. Qin, Z. Q. Cao, X. L. Li, B. R. Jia and X. H. Qu, Highly efficient synthesis of 2D VN nanoparticles/carbon sheet nanocomposites and their application as supercapacitor electrodes, Applied Surface Science, 2019, 466, 982-988.
- [6] M. H. Chen, H. Fan, Y. Zhang, X. Q. Liang, Q. G. Chen and X. H. Xia, Coupling PEDOT on Mesoporous Vanadium Nitride Arrays for Advanced Flexible All-Solid-State Supercapacitors, Small, 2020, 16.
- [7] M. Sethi, U. S. Shenoy and D. K. Bhat, A porous graphene-NiFe₂O₄ nanocomposite with high electrochemical performance and high cycling stability for energy storage applications, Nanoscale Advances, 2020, 2, 4229-4241.
- [8] M. Sethi, U. S. Shenoy and D. K. Bhat, Porous graphene-NiCo₂O₄ nanorod hybrid composite as a high performance supercapacitor electrode material, New Journal Of Chemistry, 2020, 44, 4033-4041.