Supporting Information

Development of a fully automatic separation system coupled with online ICP-MS for measuring rare earth elements in seawater

Haitao Li,^a Rui Tong,^a Wei Guo,^{*a} Quanhui Xu,^b Danyang Tao,^c Yang Lai,^a Lanlan Jin^a, and Shenghong

Huª

^a State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

^b Guangzhou Prin-Cen Scientific Ltd, Guangzhou 510730, China

^eState Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, China

*Corresponding author: Wei Guo (wei.guo@cug.edu.cn), Tel: +86-027-67883452; +86-027-67883407

Section. Calibration methods

A NexIONTM 350D ICP-MS (PerkinElmer, USA) was used for the determination of REEs in this study. For this study, the standard mode of the ICP-MS was used for the determination of ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴⁶Nd, ¹⁴⁷Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶³Dy, ¹⁶⁵Ho, ¹⁶⁶Er, ¹⁶⁹Tm, ¹⁷²Yb and ¹⁷⁵Lu. Calibration curves were constructed using mixed REE standard solutions (0.5, 1, 2, 5, 10 and 20 ng L⁻¹) and linear correlation coefficients ($R^2 > 0.999$) were calculated for all REEs. The accuracy (the relative standard deviation, RSD) of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu elements are 0.17%, 0.09%, 0.16%, 0.11%, 0.36%, 0.37%, 0.52%, 0.91%, 0.03%, 0.29%, 0.41%, 1.39%, 0.64% and 1.06%, respectively. The eluent with the target elements was injected into the spray chamber of the ICP-MS through a concentric glass nebulizer and quartz ball joint injector. Rhodium (Rh) was added to all samples and standards at a concentration of 100 µg L⁻¹ to check the elution proceeded properly. **Fig. S1** Effect of the sample injection volume on the signal intensity (A), the ratio of signal to background (B), and the relative standard deviation (C). A mixed REEs standard solution (10 ng L⁻¹ for each element) was used in this experiment.

Fig. S2 Sampling sites from the Pearl River Estuary (Guangdong, China) between 9th to 11th July, 2021.Table S1 The salt (%), pH value, and conductivity of 18 collected water samples

Table S2 REEs concentrations of river and seawater samples (ng L⁻¹)

Table S3 REEs patten (PAAS Normalized values) and Gd_N/Gd_N* of river and seawater samples

Fig. S3 Scatter diagrams of salt (A) and PH (B) vs ∑REE diagram for all seawaters.

 Table S4 Comparison of the ELSPE-2 Precon system, SeaFASTTM system and CETAC DSX-100

 system

Fig. S1 Effect of the sample injection volume on the signal intensity (A), the ratio of signal to background (B), and the relative standard deviation (n=3) (C). A mixed REEs standard solution (10 ng L⁻¹ for each element) was used in this experiment.

Fig. S2 Sampling sites from the Pearl River Estuary (Guangdong, China) between 9th to 11th July, 2021.

Sample	Descriptions	Salt (%)	pH value	Conductivity (ms/cm)
S1 SS	Surface seawater	3.21	8.16	52.4
S1 IW	Intermediate seawater	3.26	8.11	52.5
S1 BS	Bottom seawater	3.30	7.96	53.1
S2 SS	Surface seawater	2.91	7.93	47.5
S2 IW	Intermediate seawater	3.20	8.02	52.7
S2 BS	Bottom seawater	3.19	7.91	52.5
S3 SS	Surface seawater	2.50	8.02	42.0
S3 IW	Intermediate seawater	3.01	7.89	49.6
S3 BS	Bottom seawater	0.85	7.74	19.0
S4 SS	Surface seawater	2.59	8.26	44.5
S4 IW	Intermediate seawater	3.20	7.96	52.8
S4 BS	Bottom seawater	3.19	7.88	52.5
S5 SS	Surface seawater	1.03	7.60	21.8
A RW	River water	< 0.2	8.01	6.2
BRW	River water	< 0.2	7.84	0.8
C RW	River water	< 0.2	7.73	0.8
D RW	River water	< 0.2	8.10	0.3
ERW	River water	< 0.2	7.86	0.3

Table S1 The salt (%), pH value, and conductivity of 18 collected water samples

REEs	A RW	B RW	C RW	D RW	E RW	S1 SS	S1 IW	S1 BS	S2 SS	S2 IW	S2 BS	S3 SS	S3 IW	S3 BS	S4 SS	S4 IW	S4 BS	S5 SS
La	3.29	3.17	2.30	14.33	8.57	5.28	4.58	1.22	0.48	2.45	1.38	0.31	0.92	1.48	7.44	6.38	5.03	4.94
Ce	1.32	1.63	2.01	12.79	6.26	3.99	4.00	2.61	0.88	3.25	1.87	0.06	0.36	2.21	5.45	4.20	3.20	4.61
Pr	0.82	1.20	1.25	3.59	2.25	1.37	1.30	0.69	0.55	1.16	0.87	0.23	0.06	1.04	2.30	2.06	1.21	2.39
Nd	3.11	4.16	3.36	14.47	8.84	3.21	5.87	3.22	3.27	4.99	3.88	0.97	0.76	4.57	9.01	7.14	5.02	9.35
Sm	0.88	0.93	1.96	3.69	2.41	1.11	1.30	1.63	1.62	2.29	0.88	0.99	0.41	0.87	2.94	2.26	1.74	1.93
Eu	0.65	0.67	1.41	0.95	0.69	0.36	0.41	0.33	0.34	0.30	0.43	0.57	0.25	0.22	0.64	0.77	0.61	0.77
Gd	7.77	2.76	2.61	6.14	3.43	2.22	2.67	1.34	2.94	2.21	1.25	2.07	1.77	2.11	3.53	3.03	1.56	3.12
Tb	0.21	0.22	0.71	0.72	0.38	0.26	0.41	0.21	0.25	0.31	0.36	0.77	0.42	0.35	0.63	0.92	0.70	0.62
Dy	1.24	1.03	1.92	4.36	2.29	1.97	2.32	1.38	3.03	2.03	2.21	3.06	3.03	2.86	4.03	2.70	2.57	2.75
Но	0.46	0.47	0.73	0.64	0.55	0.66	0.54	0.41	0.87	0.51	0.51	1.31	0.88	0.84	0.90	1.14	0.91	0.96
Er	3.05	1.86	2.36	4.43	2.95	1.71	2.93	1.04	2.70	2.23	1.55	3.06	2.99	4.31	3.92	3.67	2.10	2.95
Tm	0.79	0.35	1.09	0.67	0.41	0.24	0.23	0.19	0.42	0.31	0.33	0.65	0.36	0.33	0.45	0.79	0.51	0.64
Yb	6.84	3.35	2.77	4.05	2.84	1.96	1.85	1.05	2.16	1.90	1.48	3.50	2.32	2.67	3.44	2.80	2.33	2.73
Lu	1.36	0.51	1.41	0.79	0.51	0.24	0.27	0.08	0.31	0.23	0.20	0.67	0.44	0.33	0.34	0.51	0.42	0.60
∑REE	31.8	22.3	25.9	71.6	42.4	24.6	28.7	15.4	19.8	24.2	17.2	18.2	15.0	24.2	45.	38.4	27.9	38.4

Table S2 REEs concentrations of river and seawater samples (ng L⁻¹)

RW: River Water;

SS: Surface seawater;

IW: Intermediate seawater;

BS: Bottom seawater;

 \sum REE= Total REE concentrations

	Α	В	С	D RW	Е	61.66	C1 IW	C1 DC	62.66	62 HW	62 DG	62.66	C2 III	62 DG	64.66		CA DC	05.00
REEs	RW	RW	RW		RW	51 55	51 I W	51 85	52 55	52 I W	82 BS	22 22	53 I W	33 B2	54 55	54 I W	54 B5	99 99
La	0.07	0.07	0.05	0.32	0.19	0.12	0.10	0.03	0.01	0.05	0.03	0.01	0.02	0.03	0.17	0.14	0.11	0.11
Ce	0.01	0.02	0.02	0.14	0.07	0.05	0.05	0.03	0.01	0.04	0.02	0.00	0.00	0.03	0.06	0.05	0.04	0.05
Pr	0.08	0.12	0.12	0.35	0.22	0.14	0.13	0.07	0.05	0.11	0.09	0.02	0.01	0.10	0.23	0.20	0.12	0.24
Nd	0.08	0.11	0.09	0.39	0.24	0.09	0.16	0.09	0.09	0.13	0.10	0.03	0.02	0.12	0.24	0.19	0.13	0.25
Sm	0.13	0.13	0.28	0.54	0.35	0.16	0.19	0.24	0.24	0.33	0.13	0.14	0.06	0.13	0.43	0.33	0.25	0.28
Eu	0.54	0.55	1.16	0.79	0.56	0.29	0.34	0.28	0.28	0.25	0.35	0.47	0.20	0.18	0.53	0.63	0.50	0.64
Gd	1.29	0.46	0.43	1.02	0.57	0.37	0.44	0.22	0.49	0.37	0.21	0.34	0.29	0.35	0.58	0.50	0.26	0.52
Tb	0.24	0.25	0.80	0.81	0.42	0.29	0.46	0.24	0.28	0.34	0.40	0.87	0.47	0.39	0.71	1.03	0.78	0.70
Dy	0.23	0.19	0.36	0.82	0.43	0.37	0.44	0.26	0.57	0.38	0.41	0.58	0.57	0.54	0.76	0.51	0.48	0.52
Но	0.44	0.44	0.69	0.61	0.52	0.63	0.51	0.39	0.82	0.48	0.49	1.24	0.84	0.80	0.86	1.09	0.87	0.91
Er	0.99	0.60	0.77	1.44	0.96	0.56	0.95	0.34	0.88	0.72	0.50	1.00	0.97	1.40	1.27	1.19	0.68	0.96
Tm	1.75	0.78	2.41	1.48	0.91	0.52	0.50	0.43	0.94	0.70	0.74	1.44	0.80	0.73	0.99	1.75	1.13	1.43
Yb	2.27	1.11	0.92	1.35	0.94	0.65	0.61	0.35	0.72	0.63	0.49	1.16	0.77	0.89	1.14	0.93	0.78	0.91
Lu	3.10	1.16	3.22	1.81	1.17	0.55	0.61	0.17	0.70	0.53	0.47	1.52	1.00	0.76	0.78	1.17	0.96	1.36
LREE _N /MREE		0.52	0.18	0.40	0.54													
Ν	0.40	0.32	0.16	0.49	0.54	0.41	0.36	0.25	0.14	0.29	0.23	0.03	0.04	0.24	0.34	0.29	0.24	0.40
HREE _N /MREE		5 2 1	1 51	2.14	2 52													
Ν	11.9	5.51	4.34	2.14	2.32	2.09	1.60	1.29	2.18	1.75	1.80	2.60	2.34	2.25	1.54	2.06	1.89	2.47
$\mathrm{Gd}_{\mathrm{N}}/\mathrm{Gd}_{\mathrm{N}}^{*}$	6.44	2.17	0.69	1.41	1.42	1.48	1.20	0.93	1.85	1.08	0.67	0.54	0.88	1.15	0.95	0.63	0.42	0.92

Table S3 REEs patten (PAAS Normalized values) and Gd_N/Gd_N^* of river and seawater Samples

RW: River Water; SS: Surface seawater; IW: Intermediate seawater; BS: Bottom seawater.

 $LREE_N = La_N + Pr_N + Nd_N; MREE_N = Sm_N + Tb_N + Dy_N; HREE_N = Tm_N + Yb_N + Lu_N;$

 $Gd_N/Gd_N^*=Gd_N/(0.33 Sm_N+0.67 Tb_N);$

where the subscript N denotes normalization to PAAS and the superscript * represents the geogenic background.

Fig. S3 Scatter diagrams of salt (A) and PH (B) vs SREE diagram for all seawaters.

Table S4 Comparison of the ELSPE-2 Precon system	, SeaFASTTM system and	CETAC DSX-100
system		

	ELSPE-2 Precon	SeaFAST TM system	CETAC DSX-100
	system		system
Particle size (µm)	5 µm	75 μm	0.2 μm
Analysis	~ 4 min/sample	$\sim 9 \text{ min/sample (Inline)}/ \sim 15$	1 h/sample
efficiency		min/sample (Offline)	
Sample	<1 mL	7~11 mL	120 mL
consumption			
Volume	0.5*0.5*0.4 m	1.5*1*0.6 m	
Cost	< \$ 50 000	> \$ 100 000	

"--" means no data; The data about SeaFASTTM system are obtained from the website (https://www.icpms.com/products/sea-fast.php) and the literatures (Hathorne et al., 2012; Behrens et al., 2016); The data about CETAC DSX-100 system are come from the literature (Kühn et al., 2000).

References

Hathorne E C, Haley B, Stichel T, et al. Online preconcentration ICP-MS analysis of rare earth

elements in seawater[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1).

Behrens M K, Muratli J, Pradoux C, et al. Rapid and precise analysis of rare earth elements in small

volumes of seawater-Method and intercomparison[J]. Marine Chemistry, 2016, 186: 110-120.

Kühn M, Kriews M. Improved detection of transition and rare earth elements in marine samples with

the CETAC DSX-100 preconcentration/matrix elimination system and ICP-MS[J]. Fresenius' journal of analytical chemistry, 2000, 367(5): 440-444.