Organic-inorganic hybrid ferrocene/AC as cathodes for wide temperature range aqueous Zn-ion supercapacitors

Shuangyu Li,^a Shu Zhang,^{*ab} Tingting Feng,^{ab} Haiping Zhou,^{ab} and Mengqiang Wu^{*ab}

^aSchool of Materials and Energy, University of Electronic Science and Technology of

China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China

^bThe Yangtze Delta Region Institute (Huzhou), University of Electronic Science and

Technology of China, Huzhou 313001, China

Corresponding Authors

*Email: shuzhang@uestc.edu.cn (S.Z.)

*Email: mwu@uestc.edu.cn (M.W.)

Fig. S1 Electrochemical behaviors of ZHSCs using ferrocene cathode (a) CV curves of low scan rates (0.1–1 mV s⁻¹); (b) CV curves of high scan rates (10–500 mV s⁻¹);
(c) GCD profiles; (d) Long-term cycling at 1 A g⁻¹.

Fig. S2 CV curves of ZHSCs using ferrocene cathode in 1 M ZnSO₄ (a) 0.1–1 mV s⁻¹;
(b) 10–500 mV s⁻¹.

Fig. S3 Electrochemical behaviors of ZHSCs using AC cathode (a) CV curves of low scan rates (0.1–1 mV s⁻¹); (b) CV curves of high scan rates (10–500 mV s⁻¹); (c) GCD profiles; (d) Long-term cycling at 1 A g^{-1} .

Fig. S4 Electrochemical behaviors of ZHSCs using hybrid cathode (ferrocene and AC in a mass ratio of 3:1) (a) CV curves; (b) GCD profiles; (c) Long-term cycling at 1 A g^{-1} .

Fig. S5 Electrochemical behaviors of ZHSCs using hybrid cathode (ferrocene and AC in a mass ratio of 5:1) (a) CV curves; (b) GCD profiles; (c) Long-term cycling at 1 A g^{-1} .

Fig. S6 Electrochemical behaviors of ZHSCs using hybrid cathode (ferrocene and AC in a mass ratio of 7:1) (a) CV curves; (b) GCD profiles; (c) Long-term cycling at 1 A g^{-1} .

Fig. S7 Capacitive contribution to the total current from CV analysis at different scan rates (the red region).

Fig. S8 (a) Discharge curve in GITT measurements of ZHSCs using AC cathode; (f) The corresponding Zn^{2+} diffusion coefficient during the discharge process.

Fig. S9 The ionic conductivities of EG0, EG20, EG40 and EG60.

Fig. S10 Rate performance of ZHSCs using ferrocene/AC cathode at -40 °C.

Fig. S11 Rate performance of ZHSCs using AC cathode at -20 °C and -30 °C.

Fig. S12 SEM images after cycling (a) Zn anode in Zn // AC SCs; (b) Zn anode in Zn // ferrocene/AC SCs.

Table S1 The specific surface area, total pore volume for adsorption, total porevolume of micropores of the three samples.

Sample	Specific surface area	Total pore volume for	Total pore volume of
	$(m^2 g^{-1})$	adsorption (cm ³ g ⁻¹)	micropores (cm ³ g ⁻¹)
ferrocene	4.859	0.031	0.001
AC	2458.658	1.361	0.982
ferrocene/AC	961.601	0.620	0.343