Supporting Information for

Ascorbic Acid-Induced Fiber-Scrolling of Titanium Carbide $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene

Jinxin Cao, ${ }^{a}$ Yuru Wang, ${ }^{a}$ Bingqing Wei, ${ }^{b}$ Jiaxin Ye ${ }^{c}$ and Qing Zhang *a a. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, Anhui, China
${ }^{\text {b. }}$ Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, USA
c. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
*E-mail: zhangq@ahu.edu.cn

Supplementary Materials:

Figures S1-S12
Tables S1-S5

Figure S1. SEM of (a) MAX, (b) as-synthesized $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene and (c) the corresponding EDS mapping; (d) XRD of MAX and the $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene; (e) AFM image of the $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene deposited on mica with height profile along with the blue line; (f) Thickness distribution and (g) lateral size distribution of the $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene for 65 platelets; (h) TEM image, (i) electron diffraction pattern and (j) HR-TEM image of the $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene.

Figure S2. The optical photographs of $\mathrm{M}_{\mathrm{x}} \mathrm{AA}_{\mathrm{y}}$: As increasing the AA ratio ($\mathrm{x}: \mathrm{y}=10: 0$, $10: 1,10: 2,10: 4,10: 6,10: 8,10: 10,10: 15,10: 17,10: 20,10: 25)$, the obtained samples presented "soft to less-soft" texture and gradually darkening color.

Figure S3. The SEM images of $\mathrm{M}_{\mathrm{x}} \mathrm{AA}_{\mathrm{y}}$ (scale bar: $20 \mu \mathrm{~m}$): Comparing the structures of $10: 1,10: 2$, and $10: 4$, besides the emergence of fibers, there is also an increase of the aspect ratio and the MXene flakes turns to long-strip shaped. In addition, it was worth noting that the length of a single fiber can reach tens or even hundreds of microns.

Figure S4. SEM images of $\mathrm{M}_{10} \mathrm{AA}_{10}$ treated with NaHCO_{3} : (a) to $\mathrm{pH}=5$, (b) to $\mathrm{pH}=$ 6 , (c) to $\mathrm{pH}=7$, and (d) to $\mathrm{pH}=8$; and the correspondng XRD results. (scale bar: 4 $\mu \mathrm{m})$.

Figure S5. High-resolution XPS spectra: (a) Ti 2 p and (b) F 1s of MXene $\left(\mathrm{M}_{10} \mathrm{AA}_{0}\right)$ and $\mathrm{M}_{10} \mathrm{AA}_{10}$; O 1s of MXene treated with HCl (c) and of MXene treated with HAc (d).

Table S1. XPS fitting results for $\mathrm{M}_{10} \mathrm{AA}_{0}$ and $\mathrm{M}_{10} \mathrm{AA}_{10}$.

$\operatorname{Peak}\left(\mathrm{M}_{10} \mathrm{AA}_{0}\right)$	Position(eV)	Area(\%)	$\operatorname{Peak}\left(\mathrm{M}_{10} \mathrm{AA}_{10}\right)$	Position(eV)	Area(\%)
Ti (I,II or IV) ${ }^{\text {a) }}$	$\begin{gathered} \hline 455.412 \\ (461.127) \end{gathered}$	27.30	Ti (I,II or IV)	$\begin{gathered} 455.212 \\ (460.903) \end{gathered}$	29.30
Ti^{+2} (I,II or IV)	$\begin{gathered} 456.229 \\ (461.651) \end{gathered}$	34.70	Ti^{+2} (I,II or IV)	$\begin{gathered} 456.106 \\ (461.508) \end{gathered}$	35.42
Ti^{+3} (I,II or IV)	$\begin{gathered} 457.272 \\ (462.772) \end{gathered}$	23.19	Ti^{+3} (I,II or IV)	$\begin{gathered} 457.189 \\ (462.693) \end{gathered}$	21.70
TiO_{2}	$\begin{gathered} 458.528 \\ (463.920) \end{gathered}$	14.82	TiO_{2}	$\begin{gathered} 458.512 \\ (463.806) \end{gathered}$	13.58
$\mathrm{C}-\mathrm{Ti}$	282.217	42.87	C-Ti	281.990	15.07
$\mathrm{C}-\mathrm{Ti}-\mathrm{O}$	283.008	11.52	C-Ti-O	282.945	5.71
$\mathrm{sp}^{2} \mathrm{C}$	284.807	33.19	$\mathrm{sp}^{2} \mathrm{C}$	284.834	14.00
C-O	286.287	12.42	C-O	286.377	28.75
			C-O-Ti	286.949	21.96
			$\mathrm{O}-\mathrm{C}=\mathrm{O}$	288.683	11.57
			C-F	291.931	2.94
Ti-O	530.159	51.62	Ti-O	529.969	10.09
C-Ti-O	531.123	15.80	C-Ti-O	530.759	1.67
C-Ti-OH	531.970	12.39	C-O-Ti	531.522	5.40
C-O	532.813	10.70	C-Ti-OH	532.231	13.01
$\mathrm{H}_{2} \mathrm{O}_{\text {ads }}$	533.889	9.49	C-O	533.105	38.18
			$\mathrm{O}-\mathrm{C}=\mathrm{O} / \mathrm{H}_{2} \mathrm{O}_{\text {ads }}$	533.810	31.65
Ti-F	685.459	71.11	Ti-F	685.251	64.47
Al-F	686.455	28.89	Al-F	686.219	35.53

Table S2. XPS fitting results for MXene treated with HCl and HAc .

Peak(HCl)	Position(eV)	Area(\%)	Peak(HAc)	Position(eV)	Area(\%)
Ti (I,II or IV) $)^{\text {a) }}$	$\begin{gathered} 455.350 \\ (461.100) \end{gathered}$	31.62	Ti (I,II or IV)	$\begin{gathered} \hline 455.380 \\ (461.134) \end{gathered}$	35.41
Ti^{+2} (I,II or IV)	$\begin{gathered} 456.230 \\ (461.650) \end{gathered}$	29.39	Ti^{+2} (I,II or IV)	$\begin{gathered} 456.240 \\ (461.621) \end{gathered}$	22.41
Ti^{+3} (I,II or IV)	$\begin{gathered} 457.270 \\ (462.770) \end{gathered}$	18.00	Ti^{+3} (I,II or IV)	$\begin{gathered} 457.111 \\ (462.862) \end{gathered}$	23.91
TiO_{2}	$\begin{gathered} 458.528 \\ (463.920) \end{gathered}$	20.98	TiO_{2}	$\begin{gathered} 458.530 \\ (463.926) \end{gathered}$	18.26
C-Ti	282.165	41.50	$\mathrm{C}-\mathrm{Ti}$	282.194	43.19
C-Ti-O	282.917	10.95	C-Ti-O	283.049	7.65
$\mathrm{sp}^{2} \mathrm{C}$	284.800	30.10	$\mathrm{sp}^{2} \mathrm{C}$	284.800	38.03
C-O	286.246	17.46	C-O	286.385	9.10
			$\mathrm{O}-\mathrm{C}=\mathrm{O} / \mathrm{H}_{2} \mathrm{O}_{\mathrm{ads}}$	289.131	2.03
Ti-O	529.972	45.72	Ti-O	530.045	51.81
C-Ti-O	530.898	17.73	C-Ti-O	531.142	15.42
C-Ti-OH	531.784	13.52	C-Ti-OH	531.946	11.08
C-O	532.681	8.81	C-O	532.856	10.32
$\mathrm{H}_{2} \mathrm{O}_{\text {ads }}$	533.726	14.22	$\mathrm{O}-\mathrm{C}=\mathrm{O} / \mathrm{H}_{2} \mathrm{O}_{\mathrm{ads}}$	533.876	11.36
Ti-F	685.207	85.61	Ti-F	685.208	77.90
Al-F	686.455	14.39	Al-F	686.326	22.10

${ }^{\text {a) }}$ (I refers to Ti atoms bonded to C atoms and one O atom; II refers to Ti atoms bonded to C atoms and an OH group; IV refers to Ti atoms bonded to OH terminations that physisorbed to water molecules). ${ }^{42}$

Figure S6. Raman spectra of $\mathrm{M}_{10} \mathrm{AA}_{0}$ and $\mathrm{M}_{10} \mathrm{AA}_{10}$: (a) ranged from 140 to $260 \mathrm{~cm}^{-1}$ and (b) the corresponding peak shifts as statistically derived from (a); (c) FTIR spectra of $\mathrm{M}_{10} \mathrm{AA}_{0}$ and $\mathrm{M}_{10} \mathrm{AA}_{10}$ and AA.

In particular, Raman results of $\mathrm{M}_{10} \mathrm{AA}_{0}$ and $\mathrm{M}_{10} \mathrm{AA}_{10}$ both show characteristic peaks of $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene (Figure 3b), where the $\mathrm{A}_{1 \mathrm{~g}}$ mode around $204 \mathrm{~cm}^{-1}$ represents the overall out-of-plane vibrations of titanium atoms, carbon atoms and surface groups. The region $230-470 \mathrm{~cm}^{-1}$ is the E_{g} mode, which represents the in-plane vibrations of the surface groups attached to the titanium atoms. The region 580-730 cm^{-1} is mainly due to carbon vibrations (both the A_{lg} and Eg_{g} mode). ${ }^{46}$

The FTIR spectrum of pure AA admits characteristic peaks at $1757 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$ stretching), $1667 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$ stretching), $1455 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{H}$ bending), $1320 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}-\mathrm{OH}$), $1120 \mathrm{~cm}^{-1}$ (C-O-C stretching) and $1026 \mathrm{~cm}^{-1}$ (C-O bending). ${ }^{36,49} \mathrm{M}_{10} \mathrm{AA}_{0}$ $\left(\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}\right)$ admits a characteristic peak at $1633 \mathrm{~cm}^{-1}$ assigned to the functional group -OH on the surface of $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} \cdot{ }^{36} \mathrm{M}_{10} \mathrm{AA}_{10}$ shows characteristic peaks from both AA and $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$; moreover, two peaks at $1143 \mathrm{~cm}^{-1}, 1114 \mathrm{~cm}^{-1}$ located close to C-O-C stretching vibration of AA, possibly overlapped with peaks due to $\mathrm{C}-\mathrm{O}$ stretching vibration of C-O-Ti bidentate complexes. ${ }^{47}$

Figure S7. XRD results of MXene treated with HAc and HCl .

Figure S8. SEM image of MXene:AA (10:10) without sonication treatment and XRD results of MXene:AA (10:10) with and without sonication treatment (Scale bar: 4 $\mu \mathrm{m})$.

Figure S9. High-resolution XPS spectra: C 1 s , O 1 s and Ti 2 p of MXene $\left(\mathrm{M}_{10} \mathrm{AA}_{0}\right)$, $\mathrm{M}_{10} \mathrm{AA}_{10}$ and $\mathrm{M}_{10} \mathrm{AA}_{10}$ without sonication treatment.

Table S3. XPS fitting results for $\mathrm{M}_{10} \mathrm{AA}_{0}, \mathrm{M}_{10} \mathrm{AA}_{10}$ and $\mathrm{M}_{10} \mathrm{AA}_{10}$ without sonication treatment.

$\begin{gathered} \text { Peak } \\ \left(\mathbf{M}_{10} \mathbf{A} A_{0}\right) \end{gathered}$	Position (eV)	Area (\%)	$\begin{gathered} \text { Peak } \\ \left(\mathbf{M}_{10} \mathbf{A A _ { 1 0 }}\right) \end{gathered}$	Position (eV)	Area (\%)	$\begin{gathered} \text { Peak } \\ \left(\mathrm{M}_{10} \mathrm{AA}_{10},\right. \\ \text { w/o } \\ \text { sonication) } \end{gathered}$	Position (eV)	Area (\%)
Ti (I,II or IV) ${ }^{\text {a) }}$	$\begin{aligned} & 455.142 \\ & (460.75) \end{aligned}$	24.68	Ti (I,II or IV) ${ }^{\text {a) }}$	$\begin{gathered} 455.311 \\ (460.835) \end{gathered}$	15.24	Ti (I,II or IV) ${ }^{\text {a) }}$	$\begin{gathered} 455.386 \\ (460.711) \end{gathered}$	15.96
$\begin{aligned} & \mathrm{Ti}^{+2} \quad(\mathrm{I}, \mathrm{II} \\ & \text { or IV) } \end{aligned}$	$\begin{gathered} 455.916 \\ (461.339) \end{gathered}$	46.25	$\begin{aligned} & \mathrm{Ti}^{+2} \quad(\mathrm{I}, \mathrm{II} \\ & \text { or IV) } \end{aligned}$	$\begin{gathered} 456.007 \\ (461.516) \end{gathered}$	47.76	Ti^{+2} (I,II or IV)	$\begin{gathered} 456.025 \\ (461.606) \end{gathered}$	46.42
$\begin{aligned} & \mathrm{Ti}^{+3} \quad(\mathrm{I}, \mathrm{II} \\ & \text { or IV) } \end{aligned}$	$\begin{gathered} 457.163 \\ (462.405) \end{gathered}$	26.29	$\begin{aligned} & \mathrm{Ti}^{+3} \quad(\mathrm{I}, \mathrm{II} \\ & \text { or IV) } \end{aligned}$	$\begin{aligned} & 457.305 \\ & 462.498 \end{aligned}$	33.70	Ti^{+3} (I,II or IV)	$\begin{aligned} & 457.234 \\ & 462.489 \end{aligned}$	31.00
TiO_{2}	$\begin{gathered} 458.709 \\ (463.113) \end{gathered}$	2.77	TiO_{2}	$\begin{gathered} 459.26 \\ 463.597 \end{gathered}$	3.30	TiO_{2}	$\begin{aligned} & 458.742 \\ & 463.583 \end{aligned}$	6.62
C-Ti	282.026	40.87	C-Ti	282.215	17.64	C-Ti	282.357	28.90
C-Ti-O	282.678	10.62	C-Ti-O	283.085	6.80	C-Ti-O	282.956	7.42
$\mathrm{sp}^{2} \mathrm{C}$	284.807	35.95	sp2 C	284.838	23.05	sp2 C	284.694	26.28
C-O	286.263	12.56	C-0	286.642	25.81	C-O	286.558	22.78
			$\mathrm{C}-\mathrm{O}-\mathrm{Ti}$	287.024	18.36	$\mathrm{C}-\mathrm{O}-\mathrm{Ti}$	287.076	11.30
			$\mathrm{O}-\mathrm{C}=0$	288.931	7.31	$\mathrm{O}-\mathrm{C}=0$	289.279	3.32
			C-F	292.225	1.04			
Ti-O	529.874	$\begin{gathered} 41.79 \\ (50.03) \end{gathered}$	Ti-O	530.091	$\begin{gathered} 14.52 \\ (31.66) \end{gathered}$	Ti-O	530.21	$\begin{gathered} 22.45 \\ (34.35) \end{gathered}$
C-Ti-O	530.938	$\begin{gathered} 27.97 \\ (33.48) \end{gathered}$	C-Ti-O	530.795	$\begin{gathered} 1.96 \\ (4.27) \end{gathered}$	C-Ti-O	530.847	$\begin{gathered} 1.70 \\ (2.61) \end{gathered}$
C-Ti-OH	532.019	$\begin{gathered} 13.77 \\ (16.49) \end{gathered}$	$\mathrm{C}-\mathrm{O}-\mathrm{Ti}$	531.58	$\begin{gathered} 11.73 \\ (25.58) \end{gathered}$	$\mathrm{C}-\mathrm{O}-\mathrm{Ti}$	531.531	$\begin{gathered} 8.27 \\ (12.65) \end{gathered}$
C-O	533.159	11.77	C-Ti-OH	532.601	$\begin{gathered} 17.64 \\ (38.48) \end{gathered}$	C-Ti-OH	532.665	$\begin{gathered} 32.92 \\ (50.38) \end{gathered}$
$\mathrm{H}_{2} \mathrm{O}_{\text {ads }}$	533.942	4.70	C-O	533.33	22.66	C-O	533.74	1.48
			$\begin{aligned} & \mathrm{O}-\mathrm{C}=\mathrm{O} \\ & / \mathrm{H}_{2} \mathrm{Oads} \end{aligned}$	533.725	31.49	$\begin{aligned} & \mathrm{O}-\mathrm{C}=\mathrm{O} \\ & / \mathrm{H}_{2} \mathrm{Oads} \end{aligned}$	533.732	33.17

*Note: In O 1 s , atomic ratios given in brackets are calculated with $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}=\mathrm{O} / \mathrm{H}_{2} \mathrm{Oads}$ excluded.

MXene:AA (10:10) without sonication shows different morphology (with curled scrolls, but not tightly structured fibers) from $\mathrm{M}_{10} \mathrm{AA}_{10}$. As shown in the above XRD results, MXene:AA (10:10) without sonication showed two peaks on the right side shoulder, indicating relatively incomplete AA intercalation as compared to $\mathrm{M}_{10} \mathrm{AA}_{10}$;
moreover, the broad shoulder on the left side is only observed in $\mathrm{M}_{10} \mathrm{AA}_{10}$, not in MXene:AA (10:10) without sonication, which means no fiber formation without sonication, consistent with the SEM results.

As shown in the Table S3, probe sonication has several effects: 1 atomic ratio of TiO_{2} is slightly decreased from $6.62 \mathrm{at} . \%$ to $3.30 \mathrm{at} \%$ (Ti 2 p); 2 atomic ratios of C-O-Ti are raised, from $11.30 \mathrm{at} . \%$ to $18.36 \mathrm{at} . \%$ (C 1s) and from $8.27 \mathrm{at} . \%$ to 11.73 at. $\% ~(\mathrm{O} 1 \mathrm{~s}$); 3 atomic ratio of $\mathrm{C}-\mathrm{Ti}-\mathrm{OH}$ is reduced from $32.92 \mathrm{at} . \%$ to $17.64 \mathrm{at} . \%$ (13.77 at. \% before mixing with AA). Based on the research of Gogotsi et al. ${ }^{50}$,

$$
\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{\mathrm{x}}(\mathrm{OH})_{\mathrm{y}} \mathrm{~F}_{\mathrm{z}}+\delta \overline{\mathrm{e}}+\delta \mathrm{H}^{+} \rightarrow \mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{\mathrm{x}-\delta}(\mathrm{OH})_{\mathrm{y}+\delta} \mathrm{F}_{\mathrm{z}}
$$

is the electrochemical reaction possibly happening in the $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}$ MXene. Therefore, after mixing with MXene, AA can be oxidized into dehydroascorbic acid, producing e^{-} and H^{+}, and at the same time, $\mathrm{C}-\mathrm{Ti}-\mathrm{O}$ transforms into $\mathrm{C}-\mathrm{Ti}-\mathrm{OH}$, while probe sonication promotes the formation of C-O-Ti. Probe sonication also leads to slight reduction of MXene.

Hence, sonication treatment promotes the AA intercalation as well as the formation of $\mathrm{C}-\mathrm{O}-\mathrm{Ti}$ bonding and is indispensible for successful fiber formation.

Figure S10. SEM images of (a) $\mathrm{M}_{10} \mathrm{AA}_{10}$ with AA removed (AA-rm) and (b) then repeating treatment with AA again (AA-rpt) and (c) their XRD results (scale bar: 10 $\mu \mathrm{m})$.

Figure S11. Loss modulus G" vs. frequency of $\mathrm{M}_{10} \mathrm{AA}_{x}$ with different AA ratios at constant stain of 0.1%.

Table S4. Thickness and aspect ratio of pressed $\mathrm{M}_{10} \mathrm{AA}_{x}$ films with different AA ratios for conductivity measurement.

Sample	Thickness $(\mu \mathrm{m})$	Aspect Ratio	Sample	Thickness $(\mu \mathrm{m})$	Aspect Ratio
$\mathrm{M}_{10} \mathrm{AA}_{0}$	5	4	$\mathrm{M}_{10} \mathrm{AA}_{10}$	9	2.5
$\mathrm{M}_{10} \mathrm{AA}_{1}$	5	4	$\mathrm{M}_{10} \mathrm{AA}_{15}$	11	2
$\mathrm{M}_{10} \mathrm{AA}_{2}$	6	3	$\mathrm{M}_{10} \mathrm{AA}_{17}$	14	3
$\mathrm{M}_{10} \mathrm{AA}_{4}$	10	2	$\mathrm{M}_{10} \mathrm{AA}_{20}$	24	2
$\mathrm{M}_{10} \mathrm{AA}_{6}$	9	3	$\mathrm{M}_{10} \mathrm{AA}_{25}$	22	3
$\mathrm{M}_{10} \mathrm{AA}_{8}$	8	5.7			

Figure S12. (a) N_{2} adsorption-desorption isotherms and (b) pore size distribution curves of $\mathrm{M}_{10} \mathrm{AA}_{x}$ with different AA ratios.

Table S5. Specific surface area and average pore diameter of $\mathrm{M}_{10} \mathrm{AA}_{x}$ with different AA ratios.

Sample	Surface Area $\left(\mathrm{m}^{2} \cdot \mathrm{~g}^{-1}\right)$	Average pore diameter (nm)	Sample	Surface Area $\left(\mathrm{m}^{2} \cdot \mathrm{~g}^{-1}\right)$	Average pore diameter (nm)
$\mathrm{M}_{10} \mathrm{AA}_{0}$	76.271	3.969	$\mathrm{M}_{10} \mathrm{AA}_{10}$	10.633	1.475
$\mathrm{M}_{10} \mathrm{AA}_{1}$	57.733	3.794	$\mathrm{M}_{10} \mathrm{AA}_{15}$	8.698	2.897
$\mathrm{M}_{10} \mathrm{AA}_{2}$	32.459	2.769	$\mathrm{M}_{10} \mathrm{AA}_{17}$	7.912	2.769
$\mathrm{M}_{10} \mathrm{AA}_{4}$	29.859	1.475	$\mathrm{M}_{10} \mathrm{AA}_{20}$	4.974	2.769
$\mathrm{M}_{10} \mathrm{AA}_{6}$	15.581	2.769	$\mathrm{M}_{10} \mathrm{AA}_{25}$	4.263	2.647
$\mathrm{M}_{10} \mathrm{AA}_{8}$	10.431	1.475			

