## **Supporting Information**

## Two-Dimensional MXO/MoX<sub>2</sub> (M=Hf, Ti and X= S, Se) Van der Waals Heterostructure: A Promising Photovoltaic Material Aman kassaye Sibhatu<sup>1,4</sup>, Georgies Alene,<sup>2</sup> Abubeker Yimam<sup>1\*</sup>, Tamiru Teshome<sup>3\*</sup> <sup>1</sup> Department of Chemical Engineering, School of Chemical and Bio Engineering, Addis Ababa institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia. <sup>2</sup>Center for Materials Engineering, Addis Ababa Institute of Technology, School of Multidisciplinary Engineering, Addis Ababa, 1000, Ethiopia <sup>3</sup> Department of Physics, College of Natural and Social Science, Addis Ababa Science and Technology University, P. O. Box 16417, Addis Ababa, Ethiopia. <sup>4</sup> Department of Chemical Engineering, College Biological and Chemical Engineering, Addis Ababa Science and Technology University, P. O. Box 16417, Addis Ababa, Ethiopia. \*Corresponding authors; email: - tamiruteshome@gmail.com; tel:- +251 966 253 809 abubeker.yimam@aau.edu.et; tel:- +251911950214



Figure S1: Top and side perspectives Janus and TMDs monolayers with heterostructure (a) T-MoX2, (b) H-MoX2, (c) H-MXO, (d) T-MXO, (e) H-MXO/MoX2, (f) T-MXO/MoX2, (g) 2H phase Brillion zone (GMKG), and (h) T phase Brillion zone (GXSYG)



Figure S2: Band structure of Janus with crystal structure (a) hexagonal HfSeO and (b)distorted HfSO



Figure S3: PDOS of Distorted (a) HfSO and (b) MoS2

| Table S1: The compared hexagonal stacking | Total (Et), Janus (E. | J), TMDs (ET), and |
|-------------------------------------------|-----------------------|--------------------|
| binding (Eb) energy                       |                       |                    |

|                        | heterostructure | Energy (eV)                | Binding Energy (eV)       |                                           |
|------------------------|-----------------|----------------------------|---------------------------|-------------------------------------------|
| Hexagonal<br>(H) Stack | AA              | Et=-39.042526              | E <sub>b</sub> =-0.01043  | @<br>k=15x15x1<br>Ecut=520ev<br>a=b=3.35Å |
|                        |                 | E <sub>J=</sub> -21.007891 |                           |                                           |
|                        |                 | E <sub>T</sub> =-18.02420  |                           |                                           |
|                        | A1A             | $E_t = -39.578522$         | E <sub>b</sub> =-0.176152 | d=3.5Å                                    |
|                        |                 | E <sub>J=</sub> -19.112645 |                           |                                           |
|                        |                 | $E_{T} = -20.289725$       |                           |                                           |
|                        | AA1             | $E_t = -39.541914$         | E <sub>b</sub> =-0.140135 |                                           |
|                        |                 | $E_{J} = -19.112066$       |                           |                                           |
|                        |                 | $E_{T} = -20.289713$       |                           |                                           |

| Stacking      | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> |
|---------------|----------------|----------------|----------------|----------------|
| Energy (eV)   | -90.679        | -90.679        | -90.773        | -90.64         |
| Band Gap (eV) | 1.158          | 1.212          | 1.00           | 1.09           |

Table S2: Total energy and band gap of the distorted (T) stacking are shown were, A1, A2, A3 & A4 for distorted (T) stacking



Figure S4: PDOS of the selected (a) A1A hexagonal Stack and distorted (b) A1, (c) A2, (d) A3, and (e) A4 stacking

## Strain effects on band gap

The strain effects are investigated here. The strain considerably changes the band structure of the material HfSeO/MoSe<sub>2</sub>, which has a band gap of 0.52eV, which is among the researched materials with a tiny band gap. We found as shown in the Figure-1 below that the band gab change when applying a strain (-6% to +6%) on hetero-structure during compressive strain it increased while the tensile reduced the band gap. The band gap become maximum is 1.2eV at the compressive strain of -6%. As a result, we can tune the band gap using strain engineering, and in our case, the band gap increases during compression.



Figure S5: Strain vs band gap for HfSeO/MoSe<sub>2</sub>



Figure S6: depicts the change in PDOS for the specified strain to  $HfSeO/MoSe_2$  (compressive strain increments of -2%, -4%, and 6%, and tensile strain increases of +2%, +4%, and +6%). Where, n represents compressive strain and p represents tensile strain.

| Heterostructure           | Bandgap (eV) |       |
|---------------------------|--------------|-------|
|                           |              |       |
|                           | PBE          | HSE06 |
| H-HfSeO/MoSe <sub>2</sub> | 1.396        | 1.925 |
| H-TiSeO/MoSe <sub>2</sub> | 1.443        | 2.302 |
| H-HfSO/MoS <sub>2</sub>   | 1.669        | 2.203 |
| $H-TiSO/MoS_2$            | 1.972        | 2.801 |
| T-HfSeO/MoSe <sub>2</sub> | 0.525        | 0.725 |
| T-TiSeO/MoSe <sub>2</sub> | 1.014        | 1.513 |
| T-HfSO/MoS <sub>2</sub>   | 1.056        | 1.642 |
| $T-TiSO/MoS_2$            | 1.464        | 1.824 |

Table S3 Bandgap values of the heterostructure using PBE and HSE06 functionals



Figure S7: Bandgap using hybrid functional for Hexagonal heterostructure (a)H-HfSeO/MoSe2, (b)H-HfSO/MoS2, (c)H-TiSeO/MoSe2, and (d)H-TiSO/MoS2



Figure S8: Bandgap of Distorted heterostructure using hybrid functional (a)T-HfSeO/MoSe2, (b)T-HfSO/MoS2, (c)T-TiSeO/MoSe2, and (d)T-TiSO/MoS2