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Figure S1: Top and side perspectives Janus and TMDs monolayers with heterostructure (a) T-

MoX2, (b) H-MoX2, (c) H-MXO, (d) T-MXO, (e) H-MXO/MoX2, (f) T-MXO/MoX2, (g) 2H 

phase Brillion zone (GMKG), and (h) T phase Brillion zone (GXSYG)
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Figure S2: Band structure of Janus with crystal structure (a) hexagonal HfSeO and (b)distorted 
HfSO
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Figure S3: PDOS of Distorted (a) HfSO and (b) MoS2

Table S1: The compared hexagonal stacking Total (Et), Janus (EJ), TMDs (ET), and 
binding (Eb) energy

heterostructure  Energy (eV) Binding Energy (eV)

Et=-39.042526
EJ=-21.007891

AA

ET=-18.02420

Eb=-0.01043

Et =-39.578522
EJ=-19.112645

A1A

ET =-20.289725

Eb=-0.176152

Et =-39.541914
EJ =-19.112066

Hexagonal 
(H) Stack

AA1

ET =-20.289713

Eb=-0.140135

@
k=15x15x1
Ecut=520ev
a=b=3.35Å
d=3.5Å
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Table S2: Total energy and band gap of the distorted (T) stacking are shown were, A1, 
A2, A3 & A4 for distorted (T) stacking

Stacking A1 A2 A3 A4 

Energy (eV) -90.679 -90.679 -90.773 -90.64

Band Gap (eV) 1.158 1.212 1.00 1.09
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Figure S4: PDOS of the selected (a) A1A hexagonal Stack and distorted (b) A1, (c) A2, 
(d) A3, and (e) A4 stacking
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Strain effects on band gap
The strain effects are investigated here. The strain considerably changes the band structure of the 

material HfSeO/MoSe2, which has a band gap of 0.52eV, which is among the researched materials 

with a tiny band gap. We found as shown in the Figure-1 below that the band gab change when 

applying a strain (-6% to +6%) on hetero-structure during compressive strain it increased while 

the tensile reduced the band gap. The band gap become maximum is 1.2eV at the compressive 

strain of -6%. As a result, we can tune the band gap using strain engineering, and in our case, the 

band gap increases during compression. 

Figure S5: Strain vs band gap for HfSeO/MoSe2
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Figure S6: depicts the change in PDOS for the specified strain to HfSeO/MoSe2 (compressive 

strain increments of -2%, -4%, and 6%, and tensile strain increases of +2%, +4%, and +6%). 

Where, n represents compressive strain and p represents tensile strain.
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Table S3 Bandgap values of the heterostructure using PBE and HSE06 functionals

                 Bandgap (eV)Heterostructure

PBE HSE06

H-HfSeO/MoSe2 1.396 1.925

H-TiSeO/MoSe2 1.443 2.302

H-HfSO/MoS2 1.669 2.203

H-TiSO/MoS2 1.972 2.801

T-HfSeO/MoSe2 0.525 0.725

T-TiSeO/MoSe2 1.014 1.513

T-HfSO/MoS2 1.056 1.642

T-TiSO/MoS2 1.464 1.824
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Figure S7: Bandgap using hybrid functional for Hexagonal heterostructure (a)H-HfSeO/MoSe2, 

(b)H-HfSO/MoS2, (c)H-TiSeO/MoSe2, and (d)H-TiSO/MoS2
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Figure S8: Bandgap of Distorted heterostructure using hybrid functional (a)T-HfSeO/MoSe2, 

(b)T-HfSO/MoS2, (c)T-TiSeO/MoSe2, and (d)T-TiSO/MoS2
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