Supplementary data

N-doped pinecone-based carbon with hierarchical porous pielike structure: A long-cycle-life anode material for potassiumion batteries

Jian-Fang Lu^{a b}, Ke-Chun Li^c, Xiao-Yan Lv^d, Fu-Hou Lei^b, Yan Mi^b,

Yan-Xuan Wen^{a e*},

^aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China.

^bSchool of Chemistry and Chemical Engineering, Guangxi MINZU University, Nanning 530006, Guangxi, China.

^cSchool of Materials and Environment, Guangxi MINZU University, Nanning 530006, Guangxi, China.

^dThe New Rural Development Research Institute, Guangxi University, Guangxi University, Nanning 530004, Guangxi, China.

^eGuangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, Guangxi, China.

^{*} Corresponding author. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China.

E-mail address: wenyanxuan@vip.163.com (X.Y. Wen).

Figure S1. (a) element mapping of PC and (b) high-resolution TEM images of PC

Figure S2. High-resolution N 1s spectra of NPC.

Figure S3. Electrochemical performance of nitrogen-doped without ZnCl2 (nPC) pinecone-based carbon: (a) cyclic-voltammetry curves at 0.1 mV s⁻¹ (b) galvanostatic charge/discharge profiles of first cycle at 50 mA g⁻¹

Figure S4. Electrochemical performances of commercial graphite (CG) and nitrogen-doped pinecone-based carbon (NPC): (a) cycle stability at 50 mA g⁻¹; (b) rate performance.

Figure S5. (a) SEM images of nPC in the fresh state and (b) in the 1000th cycle.