Supplementary Information

Improvements in Photoelectric Performance of Dye-sensitised Solar Cells Using Ionic Liquid-modified TiO₂ Electrodes

Tomohiko Inomata,*^a Ayaka Matsunaga,^a Guangzhu Jin,^a Takuma Kitagawa,^a Mizuho Muramatsu,^a Tomohiro Ozawa,^a and Hideki Masuda*^{a,b}

^aDepartment of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan ^bDepartment of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan

Contents

Scheme S1. Preparation of IL₆₆₆₄ and IL₆₆₆₁₁.

Figure S1. ¹H NMR spectrum of IL₆₆₆₄ in CH₃OD.

Figure S2. FT-IR spectrum of IL₆₆₆₄ (KBr pellet).

Figure S3. ESI-TOF mass spectrum of IL₆₆₆₄ (positive mode).

Figure S4. ¹H NMR spectrum of IL_{66611} in CD₃OD.

Figure S5. FT-IR spectrum of IL₆₆₆₁₁ (KBr pellet).

Figure S6. ESI-TOF mass spectrum of IL₆₆₆₁₁ (positive mode).

Figure S7. ESI-TOF mass spectrum of a) N3 and b) J13 dyes (positive mode).

Figure S8. ¹H NMR spectrum of N3 in CD_3OD .

Figure S9. ¹H NMR spectrum of J13 in CD_3OD .

Figure S10. IPCE spectra of DSSCs based on N3 and N3+IL₆₆₆₁₂

Figure S11. EIS spectra of TiO₂ substrates modified with **N3** and **N3**+**IL**₆₆₆₁₂ in 0.1 M TBAP CH₃CN solution at 0.6 V and several parameters obtained by curve-fitting using the equivalent circuit shown in Figure S13.

Figure S12. EIS spectra of TiO₂ substrates modified with N3 and N3+IL₆₆₆₁₂ in 0.1 M TBAP CH₃CN solution at -0.6 V and several parameters obtained by curve-fitting using the equivalent circuit shown in Figure S13.

Figure S13. The equivalent circuit for the TiO_2 substrates modified with N3 and N3+IL₆₆₆₁₂. R_{ct1} and C_{d11} mean the resistance and capacitance of the interface between FTO and TiO₂ electrodes. R_{ct2} and C_{d12} mean those of the interface between the TiO₂ surface and the electrolyte solution. R_s is the resistance of the electrolyte solution.

Scheme S1. Preparation of IL_{6664} and IL_{66611} .

Figure S1. ¹H NMR spectrum of IL₆₆₆₄ in CH₃OD.

Figure S2. FT-IR spectrum of IL₆₆₆₄ (KBr pellet).

Figure S3. ESI-TOF mass spectrum of IL_{6664} (positive mode).

Figure S4. ¹H NMR spectrum of IL₆₆₆₁₁ in CD₃OD.

Figure S5. FT-IR spectrum of IL_{66611} (KBr pellet).

Figure S6. ESI-TOF mass spectrum of IL₆₆₆₁₁ (positive mode).

Figure S7. ESI-TOF mass spectrum of a) N3 and b) J13 dyes (negative mode).

Figure S8. ¹H NMR spectrum of N3 in CD₃OD.

Figure S9. ¹H NMR spectrum of J13 in CD₃OD.

Figure S10. IPCE spectra of DSSCs based on N3 and N3+IL₆₆₆₁₂

Figure S11. EIS spectra of TiO_2 substrates modified with N3 and N3+IL₆₆₆₁₂ in 0.1 M TBAP CH₃CN solution at 0.6 V and several parameters obtained by curve-fitting using the equivalent circuit shown in Figure S13.

Figure S12. EIS spectra of TiO_2 substrates modified with N3 and N3+IL₆₆₆₁₂ in 0.1 M TBAP CH₃CN solution at -0.6 V and several parameters obtained by curve-fitting using the equivalent circuit shown in Figure S13.

Figure S13. The equivalent circuit for the TiO_2 substrates modified with N3 and N3+IL₆₆₆₁₂. R_{ct1} and C_{d11} mean the resistance and capacitance of the interface between FTO and TiO₂ electrodes. R_{ct2} and C_{d12} mean those of the interface between the TiO₂ surface and the electrolyte solution. R_s is the resistance of the electrolyte solution.