Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Insights into the solvothermal reaction for synthesizing tin(IV) oxide porous spheres

Ayano Taniguchi,^a Rei Miyata,^a Masataka Ohtani^{*ab} and Kazuya Kobiro^{*ab}

^a Graduate School of Engineering and ^b Research Center for Structured Nanochemistry, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan.

*Corresponding authors:

ohtani.masataka@kochi-tech.ac.jp kobiro.kazuya@kochi-tech.ac.jp

Fig. S1 Nitrogen adsorption/desorption measurement of porous SnO₂ obtained through Entry 1 in Table 4. Adsorption/desorption isotherm (a) and pore distributions (BJH plots) analyzed by adsorption (b) and desorption (c) measurement.

Fig. S2 Raman spectra of (a) porous SnO_2 obtained through Entry 1 in Table 4 and (b) commercially available SnO_2 (S-2000).

Fig. S3 XRD patterns of as-synthesized (left) and calcined (right) SnO₂-based composites. P–SnO₂ (a), V–SnO₂ (b), Nb–SnO₂ (c), Pd–SnO₂ (d), Pt–SnO₂ (e), Pt–P–SnO₂ (f), Pt–V–SnO₂ (g) and Pt–Nb–SnO₂ (h).

Fig. S4 Nitrogen adsorption/desorption measurement of porous SnO₂-based composites obtained through Entries 2–9 in Table 4. Adsorption/desorption isotherm (a) and pore distributions (BJH plots) analyzed by adsorption (b) and desorption (c) measurements. BELSORP-mini X was used for the measurements of P–SnO₂, V–SnO₂, Nb–SnO₂, Pt–P–SnO₂, Pt–V–SnO₂ and Pt–Nb–SnO₂. BELSORP-mini II was used for the measurements of Pd–SnO₂ and Pt–SnO₂.

Fig. S5a EDX spectrum of P-SnO₂.

Fig. S5b EDX spectrum of V–SnO₂.

Fig. S5c EDX spectrum of Nb–SnO₂.

Fig. S5d EDX spectrum of Pd–SnO₂.

Fig. S5e EDX spectrum of Pt-SnO₂.

Fig. S5f EDX spectrum of Pt-P-SnO₂.

Fig. S5g EDX spectrum of Pt–V–SnO₂.

Fig. S5h EDX spectrum of Pt–Nb–SnO₂.

Fig. S6 XRD patterns of Rh–SnO₂ and Ru–SnO₂ corresponding to Entries 5 (a), 6 (b), 7 (c), 8 (d) and 9 (e) in Table S1.

Fig. S7 SEM images of Rh–SnO₂ and Ru–SnO₂ corresponding to Entries 5 (a), 6 (b), 7 (c), 8 (d) and 9 (e) in Table S1.

	SnCl₄·5H₂O	+ different _	+ _{но} ∕о.	<u></u>	.OH + additive	 MeOH ►	product
	866 µmol	8.75 µmol	µmol 17.5 mmol			8.75mL	
Entry	Amount of reactant		Heating conditions		Product		
	Different element source	Additive (amount)	Temp. / °C	Time / min	Sample ^a	Yield / %	2 nd element ^c / at%
1	Rh(acac)₃	-	200	60	Rh–SnO ₂	0.15	_d
2	Rh(acac)₃	HCOOH (4.38 µmol)	200	60	Rh–SnO ₂	0.15	_d
3	Rh(acac)₃	-	220	60	Rh–SnO ₂	-	_d
4	Rh(acac)₃	-	200	120	Rh–SnO ₂	3.5	_d
5	Rh(acac)₃	H ₂ O (1.0 mL)	200	60	Rh–SnO ₂	85	1.1 (Rh)
6	RuCl₃·3H₂O	-	200	60	Ru–SnO ₂	89	<0.2 (Ru)
7	RuCl ₃ ·3H ₂ O ^b	-	200	60	Ru–SnO ₂	89	<0.2 (Ru)
8	RuCl₃·3H₂O	-	220	60	Ru–SnO ₂	75	<0.2 (Ru)
9	Ru(acac)₃	-	200	60	$Ru-SnO_2$	89	<0.2 (Ru)

Table S1 Solvothermal reaction of SnCl₄·5H₂O with different element source.^a

^a Concentration of hetero-element (Rh or Pt) in precursor solutions is 1 at%. ^b Amount of triethylene glycol is 8.75 mmol. ^c Determined by XRF (Entries 5 and 6) and ICP-OES (Entries 7–9). ^d Not enough products to measure.