Electronic Supplementary Information

On-Demand Electrochemically Controlled Compound Release from an Ultrasonically Powered Implant

Max L. Wang^{a,‡}, Christian F. Chamberlayne^{b,‡}, Haixia Xu^{c,‡}, Mohammad Mofidfar^{b,‡}, Spyridon Baltsavias^a, Justin P. Annes^c, Richard N. Zare^b, Amin Arbabian^a

^a Department of Electrical Engineering, Stanford University, Stanford, CA, USA

^b Department of Chemistry, Stanford University, Stanford, CA, USA

^c Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA

[‡] These authors contributed equally to this work.

Corresponding author email: arbabian@stanford.edu

Fig. S1 Measured chronoamperogram of the fluorescein loaded nanoparticulate film during 10 min stimulation at -0.5 V (black) and -1 V (red).

Fig. S2 (a) Dose curve of fluorescein after subcutaneous injection in male C57BL/6J mice (N=5/group) and (b) area under curve. Data represented as mean \pm SD. *P<0.05, ***P<0.001, ****P<0.0001