A simple supramolecular complex of boronic acid-appended β cyclodextrin and a fluorescent boronic acid-based probe with excellent selectivity for D-glucose in water

Ko Sugita ^{‡a}, Yota Suzuki ^{‡a}, Yuji Tsuchido ^{a,b}, Shoji Fujiwara ^{a,c}, Takeshi Hashimoto ^{*a}, and Takashi Hayashita ^{*}

- a. Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University,
 7-1, Kioi-cho, Chiyoda-ku, Tokyo, 102-8554 (Japan)
- b. Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 (Japan)
- c. Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686 (Japan)

‡ These authors contributed equally.

Table of Contents

ICD spectra of 1/FPB-βCyD	1
Fluorescence spectrum of 1/FPB-βCyD	2
Change in fluorescence spectra of 1 /FPB- β CyD with time	3
UV-vis specta of 1/FPB-βCyD with/without saccharides	4
pH dependence of fluorescence spectra of 1/FPB-βCyD	5
Apparent acid dissociation constants of 1 /FPB- β CyD1	0
Fluorescence spectra of $1/\text{FPB}-\beta$ CyD at various saccharide concentrations	3
Change in fluorescence spectra of $1/FPB-\beta CyD$ with time in the presence of saccharides 1	9
Determination of the conditional equilibrium constant	2
Competitive experiments	3
pH dependence of fluorescence spectra of 1/PB-βCyD2	5
Apparent acid dissociation constants of 1/PB-βCyD2	7

Fig. S1. ICD spectra of **1/FPB-\betaCyD** in DMSO/water (2/98 in v/v) in the absence (black, free) and presence of 30 mM saccharides: D-glucose (blue, glc.), D-fructose (green, fru.), and D-galactose (red, gal.); $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \text{ mM}$, 10 mM of carbonate buffer, pH = 10, $T = 25^{\circ}\text{C}$ and I = 0.10 M.

Fluorescence spectrum of 1/FPB-βCyD

Fig. S2. Fluorescence spectrum of the mixture of **1** (10 μ M) and **FPB-\betaCyD** (0.2 mM) in DMSO/water (2/98 in v/v): 10 mM of carbonate buffer, pH = 10, *T* = 25°C, *I* = 0.10 M, and λ_{ex} = 323 nm. * denotes scattered light.

Fig. S3. Change in fluorescence spectra of **1/FPB-\betaCyD** in DMSO/water (2/98 in v/v) with time. Each spectrum was measured every 67 seconds: $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of carbonate buffer, pH = 10, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \text{ nm}$.

Fig. S4. UV-vis adsorption spectra of the mixture of **1** (10 μ M) and **FPB-\betaCyD** (0.2 mM) in the absence and presence of 30 mM monosaccharides in DMSO/water (2/98 in v/v): 10 mM of carbonate buffer, pH = 10, *T* = 25°C, *I* = 0.10 M. Without monosaccharides (black), D-glucose (blue, glc.), D-fructose (green, fru.), and D-galactose (red, gal.).

Fig. S5-1. Fluorescence spectra of *1/FPB-\betaCyD* in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S5-1(a) from 0 to 600 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \ \mu\text{M}, C_{\text{FPB-}\beta\text{CyD}} = 0.2 \text{ mM}, 10 \text{ mM}$ of phosphate buffer, $T = 25^{\circ}\text{C}, I = 0.10 \text{ M}, \text{ and } \lambda_{\text{ex}} = 323 \text{ nm}.$

Fig. S5-2. Fluorescence spectra of **1/FPB-\betaCyD** in the presence of D-glucose (30 mM) in DMSO/water (2/98 in v/v): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \ \text{M}$, and $\lambda_{\text{ex}} = 323 \ \text{nm}$.

Fig. S5-3. Fluorescence spectra of **1/FPB-\betaCyD** in the presence of D-fructose (30 mM) in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S5-3(a) from 0 to 600 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \,\mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \,\text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \,\text{M}$, and $\lambda_{\text{ex}} = 323 \,\text{nm}$.

Fig. S5-4. Fluorescence spectra of **1/FPB-** β **CyD** in the presence of D-galactose (30 mM) in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S5-4(a) from 0 to 700 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \,\mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \,\text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \,\text{M}$, and $\lambda_{\text{ex}} = 323 \,\text{nm}$.

Fig. S5-5. Fluorescence intensities of **1/FPB-βCyD** at 413 (a) and 431 nm (b) under various pH conditions in the absence (black, free) and presence of saccharides (30 mM) in DMSO/water (2/98 in v/v) in Fig.s S5-1, S5-2, S5-3, and S5-4: D-glucose (blue, glc.), D-fructose (green, fru.), and D-galactose (red, gal.).

Apparent acid dissociation constants of 1/FPB-βCyD

Weak-fluorecent

Scheme S1. Acid dissociation equilibrium of **1** (a) and the reaction of **1** with saccharides (b) in water.

Fig. S6. Fluorescence intensity of **1/FPB-\betaCyD** at 413 nm under various pH conditions in the absence (a) and presence of saccharides (30 mM) in DMSO/water (2/98 in v/v): D-glucose (b), D-fructose (c), and D-galactose (d); $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \ \text{M}$, and $\lambda_{\text{ex}} = 323 \ \text{nm}$. Each solid curve indicates a theoretical sigmoidal curve derived from the acid dissociation model of a monobasic acid fitted by non-linear least squares analysis.

Fig. S6. Fluorescence intensity of **1/FPB-\betaCyD** at 413 nm under various pH conditions in the absence (a) and presence of saccharides (30 mM) in DMSO/water (2/98 in v/v): D-glucose (b), D-fructose (c), and D-galactose (d); $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \ \text{M}$, and $\lambda_{\text{ex}} = 323 \ \text{nm}$. Each solid curve indicates a theoretical sigmoidal curve derived from the acid dissociation model of a monobasic acid fitted by non-linear least squares analysis. (Continued)

Fig. S7-1. Fluorescence spectra of **1/FPB-\betaCyD** at various D-glucose concentrations in DMSO/water (2/98 in v/v): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \text{ nm}$.

Fig. S7-2. Fluorescence spectra of **1/FPB-\betaCyD** at various D-fructose concentrations in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S7-2(a) from 0 to 700 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, $I = 0.10 \ \text{M}$, and $\lambda_{\text{ex}} = 323 \ \text{nm}$.

Fig. S7-3. Fluorescence spectra of **1/FPB-\betaCyD** at various D-galactose concentrations in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S7-3(a) from 0 to 700 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \,\mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \,\text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, $I = 0.10 \,\text{M}$, and $\lambda_{\text{ex}} = 323 \,\text{nm}$.

Fig. S7-4. Fluorescence spectra of **1/FPB-\betaCyD** at various D-mannose concentrations in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S7-4(a) from 0 to 700 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \,\mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \,\text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, $I = 0.10 \,\text{M}$, and $\lambda_{\text{ex}} = 323 \,\text{nm}$.

Fig. S7-5. Fluorescence spectra of **1/FPB-\betaCyD** at various D-ribose concentrations in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S7-5(a) from 0 to 800 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \,\mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \,\text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, $I = 0.10 \,\text{M}$, and $\lambda_{\text{ex}} = 323 \,\text{nm}$.

Fig. S7-6. Fluorescence spectra of **1/FPB-\betaCyD** at various D-xylose concentrations in DMSO/water (2/98 in v/v) (a) and enlarged spectra of Fig. S7-6(a) from 0 to 700 region of the fluorescence intensity (b): $C_{\text{probe}} = 10 \,\mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \,\text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, $I = 0.10 \,\text{M}$, and $\lambda_{\text{ex}} = 323 \,\text{nm}$.

<u>Change in fluorescence spectra of 1/FPB-βCyD with time in the presence of</u> <u>saccharides</u>

Fig. S8-1. Change in fluorescence spectra of **1/FPB-\betaCyD** with time after the addition of D-glucose in DMSO/water (2/98 in v/v): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{Dglu}} = 30 \ \text{mM}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \ \text{nm}$. Each spectrum was measured every 67 seconds.

Fig. S8-2. Change in fluorescence spectra of **1/FPB-\betaCyD** with time after the addition of D-fructose in DMSO/water (2/98 in v/v): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{Dfru}} = 30 \ \text{mM}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \ \text{nm}$. Each spectrum was measured every 67 seconds.

Fig. S8-3. Change in fluorescence spectra of **1/FPB-\betaCyD** with time after the addition of D-galactose in DMSO/water (2/98 in v/v): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{Dgal}} = 30 \ \text{mM}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \ \text{nm}$. Each data was measured every 67 seconds.

Fig. S8-4. Changes in fluorescence intensities of **1/FPB-\betaCyD** at 413 and 431 nm with time after the addition of saccharides in DMSO/water (2/98 in v/v): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \text{ nm}$. Each data was measured every 67 seconds. The data were taken from Fig.s S3, S8-1, S8-2, and S8-3.

Determination of the conditional equilibrium constant

The fluorescence intensity at 431 nm was measured at various D-glucose concentrations. The data were analyzed by using KaleidaGraph programme according to a theoretical equation derived from the 1:1 binding model (Eq. S1).

$$I - I_0 = \frac{I_{\rm lim} - I_0}{2C_{\rm probe}} \left\{ C_{\rm probe} + C_{\rm glucose} + \frac{1}{K'} - \left[\left(C_{\rm probe} + C_{\rm sugar} + \frac{1}{K'} \right)^2 - 4C_{\rm probe} \cdot C_{\rm glucose} \right]^{\frac{1}{2}} \right\}$$
(S1)

where C_{glucose} is the total concentration of D-glucose; *I* and *I*₀ represent the fluorescence intensity at 431 nm in the presence and absence of D-glucose, respectively; *I*_{lim} is the fluorescence intensity at 431 nm when the change of $I (= \Delta F.I. = I - I_0)$ reaches saturation; *K*' is the conditional equilibrium constant for the reaction of $I/\text{FPB-}\beta\text{CyD}$ with D-glucose.

Fig. S9. Difference in the fluorescence intensity of **1/FPB-\betaCyD** at 431 nm (Δ F.I. = $I - I_0$) at various D-glucose concentrations in DMSO/water (2/98 in v/v): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \text{ mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \text{ nm}$. I and I_0 denote the fluorescence intensities at 431 nm in the presence and absence of saccharides, respectively.

Competitive experiments

Fig. S10-1. Fluorescence spectra of **1/FPB-\betaCyD** with 5 mM D-glucose in the presence of various 0.1 mM saccharides in DMSO/water (2/98 in v/v). The spectra of **1/FPB-\betaCyD** without saccharides was also shown: $C_{\text{probe}} = 10 \,\mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \,\text{mM}$, 10 mM of carbonate buffer, pH 10, $T = 25^{\circ}\text{C}$, $I = 0.10 \,\text{M}$, and $\lambda_{\text{ex}} = 323 \,\text{nm}$. $I \,\text{and} \, I_0$ denote the fluorescence intensities in the presence and absence of saccharides, respectively. The abbreviations, glc., fru., gal., man., rib., and xyl., denote D-glucose, D-fructose, D-galactose, D-mannose, D-ribose, and D-xylose, respectively.

Fig. S10-2. The ratio of fluorescence intensities of **1**/**FPB**- β **CyD** (*I*/*I*₀) with 5 mM D-glucose in the presence of various 0.1 mM saccharides in Fig. S10-1. *I* and *I*₀ denote the fluorescence intensities at 431 nm in the presence and absence of saccharides, respectively.

Fig. S11-1. Fluorescence spectra of **1/PB-\betaCyD** under various pH conditions in the absence (a) and presence of saccharides (30 mM) in DMSO/water (2/98 in v/v): D-glucose (b), D-fructose (c), and D-galactose (d); $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \ \text{M}$, and $\lambda_{\text{ex}} = 323 \ \text{nm}$.

Fig. S11-2. Fluorescence intensities of **1/PB-\betaCyD** at 413, 431 and 447 nm under various pH conditions in the absence (a) and presence of saccharides (30 mM) in DMSO/water (2/98 in v/v): D-glucose (b), D-fructose (c), and D-galactose (d): $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \text{ mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, I = 0.10 M, and $\lambda_{\text{ex}} = 323 \text{ nm}$.

Apparent acid dissociation constants of 1/PB-βCyD

Fig. S12. Fluorescence intensity of **1/PB-\betaCyD** at 413 nm under various pH conditions in the absence (a) and presence of saccharides (30 mM) in DMSO/water (2/98 in v/v): D-glucose (b), D-fructose (c), and D-galactose (d); $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \ \text{M}$, and $\lambda_{\text{ex}} = 323 \ \text{nm}$. Each solid curve indicates a theoretical sigmoidal curve derived from the acid dissociation model of a monobasic acid fitted by non-linear least squares analysis.

Fig. S12. Fluorescence intensity of **1/PB-\betaCyD** at 413 nm under various pH conditions in the absence (a) and presence of saccharides (30 mM) in DMSO/water (2/98 in v/v): D-glucose (b), D-fructose (c), and D-galactose (d); $C_{\text{probe}} = 10 \ \mu\text{M}$, $C_{\text{FPB-}\beta\text{CyD}} = 0.2 \ \text{mM}$, 10 mM of phosphate buffer, $T = 25^{\circ}\text{C}$, $I = 0.10 \ \text{M}$, and $\lambda_{\text{ex}} = 323 \ \text{nm}$. Each solid curve indicates a theoretical sigmoidal curve derived from the acid dissociation model of a monobasic acid fitted by non-linear least squares analysis. (Continued)