Electronic Supplementary Information

Functional utilization of biochar derived from Tenebrio molitor

feces for CO₂ capture and supercapacitor applications

Saier Wang, Ying Shi, Huiming Xiang, Ru Liu, Lianghu Su*, Longjiang Zhang and

Rongting Ji*

Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8

Jiangwangmiao Street, Nanjing 210042, P.R. China

* Corresponding author

E-mail: sulianghu@126.com (L. Su), jirongting@nies.org (R. Ji)

Contents

	Fig. S1 (a) <i>Tenebrio molitor</i> breeding laboratory; (b) Photos of TMF and TMFB; (c)
	<i>Tenebrio molitor</i> larva; (d) Adult <i>Tenebrio molitor</i> 3
	Fig. S2 (a), (b), (c), and (d) C 1s XPS of TMFB, TMFB-600A, TMFB-700A and TMFB-800A; (e), (f), (g) and (h) N 1s XPS of TMFB, TMFB-600A, TMFB-700A
	and TMFB-800A; (i), (j), (k) and (l) O 1s XPS of TMFB, TMFB-600A, TMFB-
	700A and TMFB-800A4
	Fig. S3 Adsorption-desorption isotherm and pore size distribution graph. (a, b)
	TMFB; (c, d) TMFB-600A; (e, f) TMFB-700A; (g, h) TMFB-800A5
	Fig. S4 CV curves. (a), (b) and (c) TMFB-600A, TMFB-700A and TMFB-800A;
	GCD curves. (d), (e) and (f) TMFB-600A, TMFB-700A and TMFB-800A6
	Fig. S5 Equivalent circuit diagram of biochar materials6
	Fig. S6 CV curves of TMFB-700A//TMFB-700A at high scan rate7
	Table S1 Comparison of characteristics with TMF and other animal manure
	Table S2 Comparison of BET with other animal manure-based biochar and
	activated animal manure-based biochar
	Table S3 Langmuir and Freundlich adsorption equation parameters
	Table S4 Comparison of CO ₂ capture capacity with other biochar12
	Table S5 Comparison of the electrochemical parameters of biochar material-based
	capacitor devices
R	eference14

Fig. S1 (a) *Tenebrio molitor* breeding laboratory; (b) Photos of TMF and TMFB; (c) *Tenebrio molitor* larva; (d) Adult *Tenebrio molitor*.

Fig. S2 (a), (b), (c), and (d) C 1s XPS of TMFB, TMFB-600A, TMFB-700A and TMFB-800A; (e), (f), (g) and (h) N 1s XPS of TMFB, TMFB-600A, TMFB-700A and TMFB-800A; (i), (j), (k) and (l) O 1s XPS of TMFB, TMFB-600A, TMFB-700A and TMFB-800A.

Fig. S3 Adsorption-desorption isotherm and pore size distribution graph. (a, b) TMFB; (c, d) TMFB-600A; (e, f) TMFB-700A; (g, h) TMFB-800A.

Fig. S4 CV curves. (a), (b) and (c) TMFB-600A, TMFB-700A and TMFB-800A; GCD curves. (d), (e) and (f) TMFB-600A, TMFB-700A and TMFB-800A.

Fig. S5 Equivalent circuit diagram of biochar materials.

Fig. S6 CV curves of TMFB-700A//TMFB-700A at high scan rate.

Sample	TMF	cow dung	pig manure	chicken manure
pH	6.86±0.03	10.55±0.01	10.05±0.02	10.34±0.04
Moisture content (%)	8.2±0.59	11.64±0.41	12.93±0.13	8.30±0.11
VS (%)	84.45±1.16	78.83±2.00	69.82±0.61	40.66±1.01
Density (g cm ⁻³)	0.36	0.418	0.757	0.776

Table S1 Comparison of characteristics with TMF and other animal manure

Table S2 Comparison	of BET	with	other	animal	manure-based	biochar	and	activated
animal manure-based b	oiochar.							

Sample	Biomass precursor	Pyrolysis temperature	Activation method	Activation temperatur e	BET (m²/g)	V _{total} (cm ³ /g)	Reference
TMFB	Tenebrio molitor feces	500			232.1	0.13	This work
TMFB–700A	Tenebrio molitor feces	500	КОН	700	2081.8	1.07	This work
SB	Swine manure	500			8.7	0.021	1
MB	Pig manure	500	Alkali-fused fly ash	500	7.6	0.014	1
CD-500P -650A	Cow dung	500	CO_2	650	130.80		2
PM-500P-750A	Pig manure	500	CO ₂	750	125.80		2
CM-500P-650 A	Chicken manure	500	CO ₂	650	23.55		2
Swine-Manure- Derived Biochar	Swine manure	750			37.59	0.0438	3
UBC	Earthworm manure	700			38.28		4
WBC	Earthworm manure	700	HCl washing		80.85		4
Fe/CM–biochar	cattle manure	500	FeCl ₃	500	11.1	0.027	5

nZVZ-CMC- PMBC	Panda manure	600	nano-zero valent zinc	/	72.96	0.049	6
GMC-900	goat manure	900			341.6	0.313	7
C-700	Cow manure	700			121.10		8
BC700	Pig manure	700			32.6	0.035	9
DABC700	Pig manure	700	HCl washing		218.1	0.315	9

		Langmuir	Freundlich			
Sample	$q_s (\mathrm{mmol} \; \mathrm{g}^{-1})$	K_L (MPa ⁻¹)	R ²	$K_F (ext{mmol g}^{-1}$ MP $ ext{a}^{-1/n})$	п	R ²
TMFB	2.159	28.103	0.9962	5.079	2.080	0.9933
TMFB-600A	3.428	13.835	0.9843	7.992	1.691	0.9985
TMFB-700A	4.771	15.911	0.9816	11.370	1.743	0.9998
TMFB-800A	4.473	12.363	0.9909	10.306	1.642	0.9966

Table S3 Langmuir and Freundlich adsorption equation parameters

				Activatio	CO ₂	
a 1	Biomass	Pyrolysis	Activation	n	adsorption	D. C
Sample	precursor	temperature	method	temperat	capacity (mol	Reference
				ure	kg-1)	
TMF-700A	Tenebrio molitor feces	500	КОН	700	3.05	This work
	60% wood					
WFW40-K	waste + 40%	850	КОН	550	1.30	10
	food waste					
SCK-800-1	sargassum	800	КОН	800	1.05	11
ECK-800-1	enteromorph a	800	КОН	800	0.52	11
			KOH+			
KMHC	coffee	600	nitrogen-	600	2.67	12
	grounds		doped			
NC-700-1	sawdust	700	urea phosphate	700	1.34	13
	70% wood					
WOND	chips and	950	KOULCO			1.4
WCMK	30% chicken	850	KOH+CO ₂	850	2.92	14
	manure					
			KOH+			
SNK-2	spirulina	800	nitrogen-	800	3.09	15
			doped			
WS900	walnut shell	900	Mg doped	/	1.86	16

Table S4 Comparison of CO_2 capture capacity with other biochar.

Table S5 Comparison of the electrochemical parameters of biochar material-based

Capacitor	Biomass precursor	Electrolyte	Power density (W kg ⁻¹)	Energy density (Wh kg ⁻¹)	Capacitance retention	Reference
TMFB-700A//TMFB- 700A	Tenebrio molitor feces	6M KOH	250	33.39	90.47% after 10000 cycles	This work
AC-700//AC-700	Nut inner shell biochar	1 M Na ₂ SO ₄	700	19.9	97% after 5000 cycles	17
MnO ₂ /NBC/PEDOT	Rice straw	PVA/H ₂ SO 4	706.3	7.8	83% after 1000 cycles	18
WBMs-800//WBMs- 800	wood	2М КОН	227	9.4	111% after 10000 cycles	19
TBC-K _{3.6} //TBC-K _{3.6}	pine tannin	$1 \text{ M H}_2\text{SO}_4$	110	6.7	92% after 10000 cycles	20
HBFC-1//HBFC-1	Hibiscus sabdariffa fruits	0.5 M Na ₂ SO ₄	225	13.1	96% after 5000 cycles	21
NEAC c//NEAC-c	Nostoc flagelliform	1 M	80	22	101.7% after 10000	22

capacitor devices

NFAC-C//NFAC-C	e algae	Na_2SO_4	80	22	cycles	22
FBC//FCBC	Cladophora Glomerata (FeSO ₄ modificatio n)	3M KCl	900	41.5	93.1% after 10000 cycles	23
FBC//MBC	Cladophora Glomerata (FeCl ₃ modificatio n)	3M KCl	900	30.8	99.5% after 10000 cycles	23
BMIMBF ₄ /AN	parasol fluf (Co ²⁺ modificatio n)	2M H ₂ SO ₄	300	46.38	92.2% after 10000 cycles	24
Ni(OH)2-MnO2- RGO//NBKBC	Bamboo (boron and nitrogen co- doping)	1М КОН	264	39.5	72% after 2000 cycles	25

Reference

- K. Wang, N. Peng, X. Niu, G. Lu, Y. Zhong, X. Yu, C. Du, J. Gu, H. Zhou and J. Sun, *Waste Manage.*, 2021, **126**, 400-410.
- 2. L. Su, M. Chen, G. Zhuo, R. Ji, S. Wang, L. Zhang, M. Zhang and H. Li, *Sustainability*, 2021, **13**.
- K. Wang, N. Peng, G. Lu and Z. Dang, *Waste Biomass Valori.*, 2020, 11, 613-624.
- Z. Wang, F. Shen, D. Shen, Y. Jiang and R. Xiao, *J. Environ. Sci.*, 2017, 53, 293-300.
- N. Lee, S.-H. Hong, C.-G. Lee, S.-J. Park and J. Lee, *Chemosphere*, 2021, 278, 130398.
- M. Wang, S. Hu, Q. Wang, Y. Liang, C. Liu, H. Xu and Q. Ye, J. Clean. Prod., 2021, 291, 125221.
- J. Luo, S. Bo, Y. Qin, Q. An, Z. Xiao and S. Zhai, *Chem. Eng. J.*, 2020, 395, 125063.
- J. Qin, S. Qian, Q. Chen, L. Chen, L. Yan and G. Shen, *J. Hazard. Mater.*, 2019, 371, 381-388.
- 9. P. Zhang, H. Sun, L. Yu and T. Sun, J. Hazard. Mater., 2013, 244-245, 217-224.
- A. D. Igalavithana, S. W. Choi, P. D. Dissanayake, J. Shang, C.-H. Wang, X. Yang, S. Kim, D. C. W. Tsang, K. B. Lee and Y. S. Ok, *J. Hazard. Mater.*, 2020, 391, 121147.
- 11. S. Ding and Y. Liu, *Fuel*, 2020, **260**, 116382.

- 12. S.-H. Liu and Y.-Y. Huang, J. Clean. Prod., 2018, 175, 354-360.
- 13. Q. Ma, W. Chen, Z. Jin, L. Chen, Q. Zhou and X. Jiang, *Fuel*, 2021, **289**, 119932.
- P. D. Dissanayake, S. W. Choi, A. D. Igalavithana, X. Yang, D. C. W. Tsang,
 C.-H. Wang, H. W. Kua, K. B. Lee and Y. S. Ok, *Renew. Sust. Energ. Rev.*,
 2020, 124, 109785.
- 15. S. Shi, F. O. Ochedi, J. Yu and Y. Liu, *Energ. Fuels*, 2021, **35**, 7646-7656.
- P. Lahijani, M. Mohammadi and A. R. Mohamed, J. CO2 Util., 2018, 26, 281-293.
- M. Gao, W.-K. Wang, Y.-M. Zheng, Q.-B. Zhao and H.-Q. Yu, *Chem. Eng. J.*, 2020, 402, 126171.
- H. R. Kim, J. H. Lee, S. K. Lee, Y. Chun, C. Park, J.-H. Jin, H. U. Lee and S. W.
 Kim, J. Clean. Prod., 2021, 284, 125449.
- Y. Ma, D. Yao, H. Liang, J. Yin, Y. Xia, K. Zuo and Y.-P. Zeng, *Electrochim.* Acta, 2020, 352, 136452.
- S. Pérez-Rodríguez, O. Pinto, M. T. Izquierdo, C. Segura, P. S. Poon, A. Celzard,
 J. Matos and V. Fierro, *J. Colloid Interface Sci.*, 2021, 601, 863-876.
- H. A. Hamouda, S. Cui, X. Dai, L. Xiao, X. Xie, H. Peng and G. Ma, *RSC Adv.*, 2021, 11, 354-363.
- J. Wang, Z. Li, S. Yan, X. Yu, Y. Ma and L. Ma, *RSC Adv.*, 2019, 9, 14797-14808.
- 23. S. E. M. Pourhosseini, O. Norouzi, P. Salimi and H. R. Naderi, ACS Sustain. Chem. Eng., 2018, 6, 4746-4758.

- 24. C. Chang, H. Wang, Y. Zhang, S. Wang, X. Liu and L. Li, *ACS Sustain. Chem. Eng.*, 2019, **7**, 10763-10772.
- 25. G. S. d. Reis, H. P. d. Oliveira, S. H. Larsson, M. Thyrel and E. Claudio Lima, *Nanomaterials* 2021, **11**, 424.