SUPPLEMENTARY MATERIAL

Eight new phenolic acids from the leaves of Illicium dunnianum and

their osteoprotective activities

Hai-bo Li ^{b,1}, Sen-ju Ma ^{a,c,1}, Yin-xin Shang ^a, Ting Li ^a, Zhen-zhong Wang ^b, Wei Xiao ^{b, *}, Zuocheng Qiu ^{a,*}, Yang Yu ^{a,*}

^a Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, China

^b Kanion Pharmaceutical Co. Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China

^c Shenzhen institute for drug control (shenzhen testing center of medical devices), Shenzhen 518057, China

¹Both authors contributed equally to this work.

*Corresponding authors:

Dr. Yang Yu, College of Pharmacy, Jinan University, 601 Huangpu Avenue, Guangzhou 510632, PR China. Tel. +86-20-85225849. E-mail: <u>1018yuyang@163.com</u>

Dr. Zuo-cheng Qiu, College of Pharmacy, Jinan University, 601 Huangpu Avenue, Guangzhou 510632, PR China. Tel. +86-20-85225849. E-mail: zcqiu@jnu.edu.cn

Dr. Wei Xiao, Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, PR China. Tel. +86-0518-81152371. E-mail: XWV8501@kanion.com

Fig. S1-3 IR spectrum of compound 1

Fig. S1-7 ¹³C NMR spectrum of compound 1

Fig. S1-9 ¹H-¹H COSY spectrum of compound 1

Fig. S1-10 HSQC spectrum of compound 1

Fig. S2-2 UV spectrum of compound 2

Fig. S2-4 ¹H NMR spectrum of compound 2

Fig. S2-6 The local enlarged ¹H NMR spectrum of compound 2

Fig. S3-4 ¹H NMR spectrum of compound 3

Fig. S3-6 The local enlarged ¹H NMR spectrum of compound 3

1%

Fig. S4-4 ¹H NMR spectrum of compound 4

Fig. S4-10 NOESY spectrum of compound 4

Fig. S5-2 UV spectrum of compound 5

Fig. S5-3 IR spectrum of compound 5

$\begin{array}{c} 7.7647\\ 7.7697\\ 7.75974\\ 7.75974\\ 7.55974\\ 7.53858\\ 6.8442\\ 6.8442\\ 6.8442\\ 6.8442\\ 6.5785\\ 6.50494\\ 4.2342\\ 4.2342\\ 4.2342\\ 4.23454\\ 4.23454\\ 4.23454\\ 2.27698\\ 2.23454\\ 2.23651\\ 2.23652\\ 2.2365$

Fig. S5-5 ¹³C NMR spectrum of compound 5

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl(ppa)

Fig. S5-6 ¹³C-NMR and DEPT 135 spectra of compound 5

Fig. S5-7 ¹H-¹H COSY spectrum of compound 5

Fig. S5-8 HSQC spectrum of compound 5

Fig. S5-9 HMBC spectrum of compound 5

Fig. S6-1 HR-ESI-MS spectrum of compound 6

Fig. S6-4 ¹H NMR spectrum of compound 6

Fig. S6-6 ¹³C-NMR and DEPT 135 spectra of compound 6

Fig. S6-9 HMBC spectrum of compound 6

Fig. S6-10 NOESY spectrum of compound 6 7. UV, IR, HRESIMS spectra and NMR spectra of compound 7

Fig. S7-1 HR-ESI-MS spectrum of compound 7

Fig. S7-2 UV spectrum of compound 7

Fig. S7-3 IR spectrum of compound 7

Fig. S7-5¹³C NMR spectrum of compound 7

Fig. S7-7 ¹H-¹H COSY spectrum of compound 7

Fig. S7-9 HMBC spectrum of compound 7

Fig. S8-6 ¹³C-NMR and DEPT 135 spectra of compound 8

Fig. S9-1 ¹H NMR spectrum of compound 9

Fig. S9-2¹³C NMR spectrum of compound 9

Fig. S10-2 ¹H NMR spectrum of compound 10

Fig. S11-2 ¹³C NMR spectrum of compound 11

Fig. S12-2 ¹³C NMR spectrum of compound 12

Fig. S13-1 ¹H NMR spectrum of compound 13

Fig. S13-2 ¹³C NMR spectrum of compound 13

Fig. S14-1 ¹H NMR spectrum of compound 14

Fig. S14-2¹³C NMR spectrum of compound 14

Table S1. ¹H and ¹³C NMR spectral data of compounds 9, 10, and 13

Pos.		13		9		10
	$\delta_{ m C}$	$\delta_{ m H}$ (J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (J in Hz)	$\delta_{ m C}$	$\delta_{ m H}(J{ m in}{ m Hz})$
1	130.7		135.6		135.6	
2	149.7		129.4	7.63	129.4	7.65
3	111.6	6.98, d (3.0)	130.1	7.42	130.1	7.44

4	156.8		131.8	7.42	131.8	7.44
5	114.1	6.74, dd (9.0, 3.0)	130.1	7.42	130.1	7.44
6	119.7	7.08, d (9.0)	129.4	7.63	129.4	7.65
7	126.8	6.89, dd (16.0, 1.5)	147.8	7.81, d (16.0)	147.7	7.83, d (16.0)
8	127.2	6.23, dq (13.3, 6.6)	118.2	6.58, d (16.0)	118.3	6.59, d (16.0)
9	18.9	1.88, dd (6.6, 1.4)	167.1		167.0	
1′	104.0	4.68, d (7.4)	95.9	5.58, d (7.2)	95.9	5.58, d (7.5)
2'	75.1	3.47	74.0	3.44	74.0	3.40
3'	78.3	3.43, t (8.8)	77.8	3.46	78.0	3.47
4′	71.7	3.34	71.2	3.44	71.2	3.40
5'	76.9	3.47	77.7	3.59	77.8	3.56
~	(0, 2)	4.0, dd (11.0, 1.3)	69.2	4.12, dd (11.0, 1.3)	67.8	3.98, d (10.9)
0	68.2	3.59		3.75		3.67
1″	102.3	4.71, brs	104.8	4.29, d (6.6)	102.3	4.73, brs
2''	72.4	3.68, dd (9.5, 3.3)	72.4	3.59	72.4	3.67
3″	72.2	3.82	74.2	3.52	72.1	3.86
4''	74.0	3.37	69.5	3.75	74.0	3.40
5″	69.9	3.64, dd (9.8, 3.5)	66.6	3.85, 3.52	69.8	3.67
6''	18.0	1.22, d (6.2)			18.0	1.25, d (6.2)
4-0CH ₃	56.0	3.76, s				

Measured at 400 MHz for $^1\mathrm{H}$ and 100 MHz for $^{13}\mathrm{C}$ in CD_3OD

Multiplets and or overlapped signals are reported without designating multiplicity

Pos.		11	12		
	$\delta_{ m C}$	$\delta_{ m H}$ (J in Hz)	$\delta_{ m C}$	$\delta_{ m H} \left(J ext{ in Hz} ight)$	
1	130.6		130.6		
2	149.7		149.7		
3	111.7	6.97, d (3.0)	111.6	6.97, d (3.0)	
4	156.7		156.7		
5	114.2	6.76, dd (9.0, 3.0)	114.2	6.74, dd (9.0, 3.0)	
6	119.3	7.13, d (9.0)	119.4	7.13, d (9.0)	
7	126.9	6.88, dd (15.9, 1.5)	126.9	6.88, dd (15.9, 1.3)	
8	127.1	6.22, dq (13.3, 6.6)	127.1	6.22, dq (13.3, 6.6)	
9	18.8	1.88, dd (6.6, 1.5)	18.8	1.88, dd (6.6, 1.3)	
1′	103.6	4.76, d (7.3)	103.7	4.74, d (7.4)	
2'	75.1	3.49	74.9	3.44	
3'	78.1	3.44	78.1	3.44	
4'	71.6	3.41	71.4	3.44	
5'	77.3	3.55	77.3	3.55	
6'	<i>(</i>) <i>(</i>	4.09, dd (11.5, 1.8)	69.7	4.08, dd (11.5, 1.2)	
	69.4	3.73		3.78, d (6.1)	
1″	104.9	4.30, d (6.7)	105.2	4.32, d (7.4)	

Table S2. ¹H and ¹³C NMR spectral data of compounds 11-12

2''	72.4	3.58	77.6	3.27, d (8.7)
3''	74.1	3.49	75.0	3.20
4"	69.4	3.78	71.2	3.44
5''		3.83, dd (12.3, 3.3)	(()	3.83, dd (11.4, 5.3)
	66.6	3.46	00.8	3.14
4-OCH ₃	56.0	3.75, s	56.0	3.76, s

Measured at 400 MHz for $^1\mathrm{H}$ and 100 MHz for $^{13}\mathrm{C}$ in CD₃OD

Multiplets and or overlapped signals are reported without designating multiplicity

Pos	14		Dee	14		
	$\delta_{ m C}$	$\delta_{ m H} \left(J ext{ in Hz} ight)$	Pos.	$\delta_{ m C}$	$\delta_{ m H} \left(J ext{ in Hz} ight)$	
1	170.0		4'	129.5	7.38, t (7.3)	
2	110.8		5'	129.2	7.33, d (7.2)	
3	158.2		6'	129.5	7.38, t (7.3)	
4	107.8	6.74, d (8.3)	7'	129.2	7.50, t (7.4)	
5	134.0	7.26, t (8.3)	1″	102.7	4.94, d (7.4)	
6	111.6	6.59, t (8.3)	2''	74.9	3.41	
7	159.8		3''	78.0	3.41	
1′	68.2	5.38, s	4''	71.2	3.41	
2'	137.4		5''	78.3	3.41	
3'	129.2	7.50, t (7.4)	6''	62.5	3.86, dd (11.7, 0.9)	
					3.66, dd (12.1, 5.4)	

Table S3. ¹H and ¹³C NMR spectral data of compound 14

Measured at 400 MHz for ¹H and 100 MHz for ¹³C in CD₃OD

Multiplets and or overlapped signals are reported without designating multiplicity