Structural elucidation of hexavalent Cr-adsorbed on surfaces and bulks of Fe_3O_4 and $\alpha\text{-FeOOH}$

Nichapha Senamart,^a Krittanun Deekamwong,^b Jatuporn Wittayakun,^b Sanchai Prayoonpokarach, ^b Narong Chanlek,^c Yingyot Poo-arporn,^c Suttipong Wannapaiboon,^c Pinit Kidkhunthod^c and Sirinuch Loiha*^a

S1 Phase indexing of the obtained samples by employing Match! Software using Crystallography Open Database (COD) and their refined unit cell parameters obtained by the combined-package FullProf Software.

Data /Samples	Fe ₃ O ₄	FeOOH	Cr@Fe ₃ O ₄	Cr@FeOOH
Indexed phase	Fe ₃ O ₄	FeOOH	Fe ₃ O ₄	FeOOH
	Magnetite	lron(III) oxide hydroxide Goethite	Magnetite	Iron(III) oxide hydroxide Goethite
COD Entry number	96-900-5842	96-100-8767	96-900-5842	96-100-8767
Figure of Merit (FoM)	0.8516	0.9064	0.8736	0.9073
Crystal system	cubic	orthorhombic	cubic	orthorhombic
Space group	Fd-3m	Pbnm	Fd-3m	Pbnm
Database unit cell parameters (Å)	a = b = c = 8.3440 Å	a = 4.6188 Å, b = 9.9528 Å, c = 3.0236 Å	a = b = c = 8.3440 Å	a = 4.6188 Å, b = 9.9528 Å, c = 3.0236 Å
Refined unit cell parameters				
а	8.36375	4.61080	8.36239	4.60876
b	8.36375	9.96234	8.36239	9.95935
С	8.36375	3.02355	8.36239	3.02265
α	90.0	90.0	90.0	90.0
β	90.0	90.0	90.0	90.0
γ	120.0	90.0	90.0	90.0
Chi ²	0.774	1.15	0.862	1.21

S2 XRD pattern indexing and Rietveld refinement of the sample Fe_3O_4 showing the refined phase as Magnetite Fe_3O_4 (COD, Entry Number 96-900-5842).

S3 XRD pattern indexing and Rietveld refinement of the sample FeOOH showing the refined phase as iron(III) oxide hydroxide goethite (COD, Entry Number 96-100-8767)

S4 XRD pattern indexing and Rietveld refinement of the sample $Cr@Fe_3O_4$ showing the refined phase as Magnetite Fe_3O_4 (COD, Entry Number 96-900-5842)

S5 XRD pattern indexing and Rietveld refinement of Cr@FeOOH showing the refined phase as iron(III) oxide hydroxide goethite (COD, Entry Number 96-100-8767)

α-FeOOH

Fe₃**O**₄

S6 Particle size distribution of Fe₃O₄ and α -FeOOH calculated by TEM images.

S7 Point of zero charges (PZC) of as-synthesized Fe₃O₄ and α -FeOOH adsorbents.

S8 Effect of adsorbent dose on the Cr⁶⁺ uptake by the Fe₃O₄ and α -FeOOH, adsorption condition: Cr⁶⁺ initial concentration = 1 ppm, volume 50 mL, pH = 3, time = 30 min.

The effect of the adsorbent dose on Cr⁶⁺-adsorption is described in Fig. S8. The maximum Cr⁶⁺ uptakes on α -FeOOH and Fe₃O₄ are 2.08 and 2.65 mg/g, respectively, at the adsorbent dose of 0.02 mg. The Cr⁶⁺ uptakes on both adsorbents decreased with increasing adsorbent doses. The results might be attributable to a decrease in the adsorbent-surface area by particle agglomeration when the dosing was increased.^{1, 2} Each particle could strongly induce magnetism facilitating the particle accumulation of Fe₃O₄. Meanwhile, the suspended α -FeOOH also aggregates to large particles in water due to the high electrostatic attraction of the particles.

S9 Effect of contact time on the Cr⁶⁺ uptake by the Fe₃O₄ and α -FeOOH, adsorption condition: Cr⁶⁺ initial concentration = 1 ppm, volume 50 mL, pH = 3, adsorbent dose 0.4 g/L.

The effect of contact time on the Cr^{6+} removal was investigated from 10 to 90 min. Timedependences of Cr^{6+} uptake on α -FeOOH and Fe₃O₄ are shown in Fig. S9. The adsorption saturation time of the materials was rapidly achieved at about 30 min and 60 min for α -FeOOH and Fe₃O₄, respectively. The decrease of Cr-uptake from α -FeOOH after 30 min might be due to a spontaneous change in adsorption conditions such as pH. The maximum Cr-uptake of 2.87 mg/g was observed by Fe₃O₄.

S10 Effect of initial concentration on the Cr Cr⁶⁺ uptake by the Fe₃O₄ and α -FeOOH, adsorption condition: Cr⁶⁺ solution volume 50 mL, pH = 3, adsorbent dose 0.4 g/L, time = 30 min.

The effect of initial concentration Cr⁶⁺ solution was carried out from 1-20 ppm. The adsorption capacities of the adsorbents are shown in Fig. S10. The adsorption capacity of α -FeOOH increased with increasing initial concentration according to the surface area of the α -FeOOH. In contrast, the adsorption capacity of Fe₃O₄ decreased with increasing initial concentration. The adsorption saturation is reached at the beginning of the adsorption process indicating low surface binding of the adsorbents. ^{3, 4}

S11 Adsorption isotherms fitted with models of Freundlich (a-b), Langmuir (c-d), Dubinin-Radusckevisch-Kanager (e-f) and Temkin (g-h) isotherms of α -FeOOH and Fe₃O₄, respectively.

Isotherm	Isotherm	Materials		
	parameter	α-FeOOH	Fe ₃ O ₄	
	K _f (mg/g)	1.35	1.54	
Freundlich	n	6.99	-6.88	
	R ²	0.4810	0.6237	
	Q _m (mg/g)	2.51	1.84	
Langmuir	b	6.53	-2.42	
	R ²	0.9284	0.9909	
	q _(D-R) (mg/g)	2.4559	2.2940	
DRK	E (kJ/mol)	3.904	n.a.	
	R ²	0.4272	0.2940	
	k1 (J/mol)	0.3159	-0.3547	
Temkin	k2 (L/g)	629.9875	4.3455 x 10 ⁻⁴	
	R ²	0.3875	0.5855	

S12 Adsorption parameters calculated from Freundlich, Langmuir, Dubinin-Radusckevisch-Kanager (DRK) and Temkin adsorption models of Cr^{6+} adsorption by α -FeOOH and Fe₃O₄.

Table S13 Kinetic parameters for Cr^{6+} adsorption of $\alpha\mbox{-}FeOOH$ and Fe_3O_4

Materials —	Ps	Pseudo-first order			Pseudo-second order		
	q _e	k ₁	R ²	q	k ₂	R ²	
α-FeOOH	2.90	2.48	0.2369	3.19	0.02	0.9663	
Fe ₃ O ₄	2.42	5.53	0.9965	2.52	0.05	0.9987	

S14 Thermodynamic parameters of α -FeOOH and Fe₃O₄ for Cr⁶⁺ adsorption.

Materials	ΔH° (kJ/mol)	ΔS° (J/mol∙K)	ΔG° ₂₉₈ (kJ/mol)	ΔG° ₃₁₃ (kJ/mol)	ΔG°₃₃₃ (kJ/mol)
α-FeOOH	-4.42	-2.09	-3.85	-3.76	-3.72
Fe_3O_4	10.48	49.79	-4.35	-5.10	-6.09

\$15 Cr K-edge XANES spectra of Cr@Fe₃O₄ and Cr@FeOOH compared with Cr-standards.

S16 Fourier transforms of the $k^3(\chi)$ -weighted in Fe *K*-edge of EXAFS data collected from the Fe₃O₄ (a) Cr@Fe₃O₄ (b) α -FeOOH (c) and Cr@ α -FeOOH (d).

S17 EXAFS fitting parameters of $k^3 (\chi)$ weight of Cr K-edge on Cr@Fe₃O₄ and Cr@FeOOH.

Sample	Bond	Distance	Coordination	Debye-Waller
		(Å)	number (CN)	factor (σ ²)
Cr@Fe₃O₄	Cr-O	1.22	1.1	0.013
	Cr-O	1.56	2.0	0.008
	Cr-O	1.87	2.0	0.010
	Cr-Cr	2.41	2.0	0.018
	Cr-Cr	3.62	1.4	0.005
Cr@FeOOH	Cr-O	1.33	2.2	0.006
	Cr-O	1.59	1.9	0.018
	Cr-Cr	3.17	2.0	0.022

References

- 1 N. Tumin, A. Luqman Chuah, Z. Z and S. Abdul Rashid, J. Eng. Sci. Technol. 2008, 3.
- 2 K. S. Padmavathy, G. Madhu and P. V. Haseena, Procedia Eng., 2016, 24, 585-594.
- 3 S. Rahimi, R. M. Moattari, L. Rajabi, A. A. Derakhshan and M. Keyhani, J. Ind. Eng. Chem., 2015, 23, 33-43.
- 4 G. Zolfaghari, A. Esmaili-Sari, M. Anbia, H. Younesi, S. Amirmahmoodi and A. Ghafari-Nazari, J. Hazard. Mater., 2011, **192**, 1046-1055.