Supporting Information

Palladium-catalyzed C-H Olefination of Uridine, Deoxyuridine, Uridine Monophosphate and Uridine Analogues
Qin Zhao, Ruoqian Xie, Yuxiao Zeng, Wanlu Li, Guolan Xiao, Yangyan Li and Gang Chen

Table of Contents

1. General information 2
2. Details for the direct $\mathbf{C}-\mathbf{H}$ olefinations 3
2.1 Optimization of C-H olefinations 3
Table S1. Oxidant screening 3
Table S2. Solvent screening 4
Table S3. Additive screening 5
Table S4. Ligand screening 6
Table S5. Atmosphere screening 7
Table S6. Temperature and Time screening 7
2.2. Substrate scope 8
Table $\mathbf{S 7}$. Substrate scope of the uridines 8
Table S8. Substrate scope of the alkenes 9
2.3 General procedure 9
3. Characterization data for compounds 3aa-3ia, 3ab-3aj, 3bb-3bj 10
3.1 Applications of the methodology 22
a) Gram scale preparation of 3aa 22
b) On-water reaction ${ }^{\text {a }}$ 22
c) Derivative of 3aj ${ }^{[12,13]}$ 23
4. References 25
5. NMR Spectra 26

1. General information

All the chemicals were purchased commercially and used without further purification. General reagents were obtained from Adamas, Leyan, Innochem, Laajoo and Bidepharm. Anhydrous solvents were obtained from J\&K. Analytical thin layer chromatography was performed on 0.25 mm silica gel $60-\mathrm{F} 254$. Visualization was carried out with UV light and Vogel's permanganate. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker- 400 MHz and Bruker- 500 MHz instruments. When the ${ }^{1} \mathrm{H}$ NMR solvent was DMSO- $d-6$, chemical shifts were quoted in parts per million (ppm) referenced to 2.50 ppm for solvent DMSO- $d-6$. When the ${ }^{1} \mathrm{H}$ NMR solvent was Methanol- $d-4$, chemical shifts were quoted in parts per million (ppm) referenced to 3.31 ppm for solvent Methanol- $d-4$. When the ${ }^{1} \mathrm{H}$ NMR solvent was $\mathrm{D}_{2} \mathrm{O}$, chemical shifts were quoted in parts per million (ppm) referenced to 4.79 ppm for solvent $\mathrm{D}_{2} \mathrm{O}$. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiple, $\mathrm{dd}=$ double doublet, $\mathrm{dt}=$ double triplet. Coupling constants, J, were reported in Hertz unit $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-400 instrument (101 MHz) and Bruker-500 instrument (126 MHz), and were fully decoupled by broad band proton decoupling. When the ${ }^{13} \mathrm{C}$ NMR solvent was DMSO- $d-6$, chemical shifts were quoted in parts per million (ppm) referenced to 39.52 ppm for solvent DMSO- $d-6$. When the ${ }^{13} \mathrm{C}$ NMR solvent was Methanol- $d-4$, chemical shifts were quoted in parts per million (ppm) referenced to 49.00 ppm for solvent Methanol- $d-4$. Reverse-phase column chromatography was performed on SepaBean ${ }^{\circledR}$ machine T from Santai Technologies in Changzhou, China, using ODS 4560 mm C18 Spherical silica. The high-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Optical rotations were measured on an Anton Paar MCP100 automatic polarimeter using a 100 mm path-length cell at 589 nm . Melting points were measured with microscope WRX-4 (Shanghai Yice).

2. Details for the direct $\mathbf{C}-\mathbf{H}$ olefinations

2.1 Optimization of $\mathbf{C}-\mathrm{H}$ olefinations

Table S1. Oxidant screening

Entry ${ }^{\text {a }}$	[O]	Yield ${ }^{\text {b }}$ of 3aa	Recovery ${ }^{\text {b }}$ of 1a
1	$\mathrm{PhCO}_{3}{ }^{t} \mathrm{Bu}$	24\%	31\%
2	$\mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}$	37\%	60\%
3	DTBP	13\%	85\%
4	TBHP	20\%	73\%
5	$\mathrm{PhI}(\mathrm{OAc})_{2}$	14\%	43\%
6	Oxone	9\%	78\%
7	DLP	1\%	93\%
8	Benzoquinone	1\%	23\%
9	m - CPBA	0\%	23\%
10	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O} 8$	9\%	5\%
11	$\mathrm{H}_{2} \mathrm{O}_{2}$	8\%	91\%
12	$\mathrm{Cu}(\mathrm{OAc})_{2}$	0\%	100\%
13	CaOTf	0\%	97\%
14	AgOAc	2\%	97\%

${ }^{\text {a }}$ Conditions: uridine $1 \mathbf{a}(0.1 \mathrm{mmol})$, methyl acrylate 2a $(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, oxidant $(0.2 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.4 \mathrm{~mL})$ under air at $70^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\mathrm{b}}$ Yields and recovery were determined by LC-MS.

Table S2. Solvent screening

 1a	$\begin{gathered} \mathrm{CO}_{2} \mathrm{Me} \\ 2.0 \text { equiv. } \\ \text { 2a } \end{gathered}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ $\mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}$ (2.0 equiv.) solvent (0.25 M) $70^{\circ} \mathrm{C}, 12 \mathrm{~h}$	
Entry ${ }^{\text {a }}$	Solvent	Yield ${ }^{\text {b }}$ of 3aa	Recovery ${ }^{\text {b }}$ of 1a
1	$\mathrm{CH}_{3} \mathrm{CN}$	37\%	60\%
2	Benzonitrile	2\%	42\%
3	$\mathrm{H}_{2} \mathrm{O}$	2\%	98\%
4	MeOH	< 1%	82\%
5	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	0\%	83\%
6	t - BuOH	6\%	61\%
7	t-AmlyOH	6\%	69\%
8	Glycol	0\%	98\%
9	Pyridine	0\%	100\%
10	DMSO	7\%	91\%
11	DMA	18\%	77\%
12	HFIP	17\%	72\%
13	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	2\%	76\%
14	$\mathrm{CH}_{3} \mathrm{COOH}$	59\%	24\%
15	HCl	27\%	0\%
16	THF	2\%	47\%
17	Dioxane	16\%	75\%
18	Toluene	0\%	44\%
19	Cyclohexane	0\%	100\%
20	DCE	0\%	99\%

${ }^{\text {a }}$ Conditions: uridine 1a $(0.1 \mathrm{mmol})$, methyl acrylate 2a $(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, $\mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}(0.2 \mathrm{mmol})$, solvent $(0.4 \mathrm{~mL})$ under air at $70{ }^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\text {b }}$ Yields and recovery were determined by LC-MS.

Table S3. Additive screening

${ }^{\text {a }}$ Conditions: uridine 1a $(0.1 \mathrm{mmol})$, methyl acrylate 2a (0.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, $\mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}(0.2 \mathrm{mmol})$, additive $(0.2 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.4 \mathrm{~mL})$ under air at $70{ }^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\mathrm{b}}$ Yields and recovery were determined by LC-MS.

Table S4. Amino acid and pyridine ligand screening

${ }^{\text {a }}$ Conditions: uridine $1 \mathbf{a}(0.1 \mathrm{mmol})$, methyl acrylate 2a $(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, $\mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}(0.2 \mathrm{mmol}), \mathrm{PivOH}(0.2 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.4 \mathrm{~mL})$, Ligand (0.015 mmol) under air at $70^{\circ} \mathrm{C}$ for 12 hours.

Table S5. Atmosphere screening

${ }^{\text {a }}$ Conditions: uridine $1 \mathbf{a}(0.1 \mathrm{mmol})$, methyl acrylate 2a $(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, $\mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}(0.2 \mathrm{mmol}), \mathrm{PivOH}(0.2 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.4 \mathrm{~mL})$ under air at $70^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\mathrm{b}}$ The reaction was carried out under an argon atmosphere. ${ }^{\mathrm{c}}$ The reaction was carried out under an oxygen atmosphere. ${ }^{d}$ Yields and recovery were determined by LC-MS

Table S6. Temperature and Time screening

${ }^{\text {a }}$ Conditions: uridine $1 \mathbf{a}(0.1 \mathrm{mmol})$, methyl acrylate 2a $(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, $\mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}(0.2 \mathrm{mmol}), \mathrm{PivOH}(0.2 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.4 \mathrm{~mL})$ under air. ${ }^{\mathrm{b}}$ Yields and recovery were determined by LC-MS.

2.2. Substrate scope

Table S7. Substrate scope of the uridines

${ }^{\text {a }}$ Conditions: uracil-based nucleosides/nucleotides $\mathbf{1}(0.1 \mathrm{mmol})$, methyl acrylate $\mathbf{2 a}$ (2.0 equiv.), $\operatorname{Pd}(\mathrm{OAc})_{2}(10$ $\mathrm{mol} \%$), $\mathrm{CH}_{3} \mathrm{CO}_{3}{ }^{t} \mathrm{Bu}$ (2.0 equiv.), PivOH (2.0 equiv.), $\mathrm{CH}_{3} \mathrm{CN}\left(0.4 \mathrm{~mL}\right.$) under air at $70{ }^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\mathrm{b}}$ Mixed solvents of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}\left(10: 1\right.$, v/v) was used. ${ }^{\mathrm{c}}$ Yield determined by LC-MS and compound not isolated.

Table S8. Substrate scope of the alkenes
(
${ }^{\mathrm{a}}$ Conditions: uridine $1 \mathbf{1 a}$ or 2'-deoxyuridine $\mathbf{1 b}(0.1 \mathrm{mmol})$, olefines 2 (2.0 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CO}_{3}{ }^{t} \mathrm{Bu}$ (2.0 equiv.), PivOH (2.0 equiv.), $\mathrm{CH}_{3} \mathrm{CN}(0.4 \mathrm{~mL})$ under air at $70^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\mathrm{b}}$ The reaction was carried out under O_{2} at $90^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\mathrm{c}}$ Yield determined by LC-MS and compound not isolated. Isolated yield.

2.3 General procedure

General procedure A ($0.1 \mathbf{~ m m o l}$ scale): A 10 mL reaction tube was charged with substrate 1a-1h ($0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathrm{CH}_{3} \mathrm{CO}_{3}{ }^{t} \mathrm{Bu}$ ($64 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) (50% solution in aromatic free mineral spirit), PivOH ($20.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv.) and $\mathbf{2 a - 2 j}$ ($0.2 \mathrm{mmol}, 2.0$ equiv.), then 0.4 mL $\mathrm{CH}_{3} \mathrm{CN}$ was added to dissolved the above mixture. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath to stir at $70^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then cooled to room temperature. It was filtered through a pad of celite and washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (preparative TLC) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=25: 1\right.$ to $\left.10: 1\right)$ or reverse-phase column chromatography (C18 Spherical silica) (MeOH: $\mathrm{H}_{2} \mathrm{O}=0: 1$ to

1:1) to give the pure products 3aa-3ia, 3ab-3aj, 3bb-3bj .

3. Characterization data for compounds 3aa-3ia, 3ab-3aj, 3bb-3bj

Methyl(E)-3-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxy methyl)

 tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3aa) ${ }^{[1]}$

3aa was obtained following the general procedure \mathbf{A} from 1a. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 3aa was obtained as a yellow solid ($23.6 \mathrm{mg}, 72 \%$), gram scale ($5 \mathrm{mmol}, 1.02 \mathrm{~g}, 62 \%$) $\mathrm{mp} 180.7-182.6^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-41.58$ (c 0.670, MeOH); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 11.69(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}$, $1 \mathrm{H}), 7.34$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.76 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.04$ (m, $1 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.56$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 167.2,161.8,149.5,144.0,138.0,116.2,108.2$, 88.6, 84.6, 73.9, 69.0, 60.2, 51.3. HRMS-ESI m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$ 351.0799; found 351.0798 .

Methyl (E)-3-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ba) ${ }^{[2]}$

3ba was obtained following the general procedure \mathbf{A} from 1b. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, 3ba was obtained as a yellow solid ($19.6 \mathrm{mg}, 69 \%$). mp $97.3-100.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-1.86$ (c $\left.0.700, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.63(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.68$ ($\mathrm{s}, 3 \mathrm{H}$), 3.67-3.62 (m, 1H), 3.61$3.54(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 169.7,163.6,151.1$, 144.8, 138.8, 118.4, 110.4, 89.2, 87.1, 71.7, 62.4, 52.0, 41.9. HRMS-ESI m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 335.0850$; found 335.0852 .

Methyl(E)-3-(1-((2R,3R,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)

 tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ca)

3ca was obtained following the general procedure \mathbf{A} from 1c on 0.1 mmol scale. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(15 / 1)$ as the eluent, 3ca was obtained as a faint yellow solid ($26.4 \mathrm{mg}, 80 \%$). mp 142.7-144.4 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-58.49$ (c $0.330, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.49(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=52.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.11(\mathrm{~m}, 1 \mathrm{H})$, 3.95-3.81 (m, 2H), 3.70-3.60 (m, 4H). ${ }^{19}$ F NMR (376 MHz , DMSO) $\delta-202.05 .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.2,161.9,149.1,143.5,138.0,116.2,108.0,93.8$ (d, J $=184.3 \mathrm{~Hz}), 87.6(\mathrm{~d}, J=29.9 \mathrm{~Hz}), 83.1,66.7(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 58.7,51.4$. HRMS-ESI m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 353.0755$; found 353.0756.

Methyl(E)-3-(1-((2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3-methoxytetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5yl)acrylate (3da) ${ }^{[3]}$

3da was obtained following the general procedure \mathbf{A} from 1d on 0.2 mmol scale. After purification by reverse-phase column chromatography (C18 Spherical silica) using $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as the eluent, 3da was obtained as a white solid ($59.5 \mathrm{mg}, 87 \%$). mp 214.7$217.3{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-13.524(\mathrm{c} 0.175, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.69(\mathrm{~s}, 1 \mathrm{H})$, $8.55(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42$ (brs, 1H), $5.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 2 \mathrm{H})$, $3.74(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.2,149.4,143.7,138.0,116.2,108.2,86.8,84.8,83.0$, 67.6, 59.7, 57.7, 51.3. HRMS-ESI m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 365.0955$; found 365.0956 .
(2R,3R,4R,5R)-2-(acetoxymethyl)-5-(5-((E)-3-methoxy-3-oxoprop-1-en-1-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3,4-diyl diacetate (3ea)

3ea was obtained following the general procedure \mathbf{A} from $\mathbf{1 e}$ on 0.2 mmol scale. After purification by PTLC (preparative TLC) using petroleum ether/ethyl acetate ($2 / 3$) as the eluent, 3ea was obtained as a beige solid ($46.5 \mathrm{mg}, 51 \%$). mp 104.2-106.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}$ -41.80 (c $0.500, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.03$ (s, 1H), 7.38 (d, $J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.49$ (m, 1H), 5.43 $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.33(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{MeOD}) \delta 172.2,171.4,171.3,169.5,163.3,150.8,145.1,138.4,119.4,111.0$, 91.0, 81.4, 74.5, 71.4, 64.0, 52.1, 20.8, 20.4, 20.3. HRMS-ESI m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 477.1116$; found 477.1113.

Methyl(E)-3-(1-((3aR,4R,6R,6aR)-6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3fa)

3fa was obtained following the general procedure \mathbf{A} from $\mathbf{1 f}$ on 0.1 mmol scale. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(22 / 1)$ as the eluent, 3fa was obtained as a white solid ($24.2 \mathrm{mg}, 66 \%$). $\mathrm{mp} 179.8-183.4^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-40.36(\mathrm{c} 0.280$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.74(\mathrm{~s}, 1 \mathrm{H}), 8.35$ ($\mathrm{s}, 1 \mathrm{H}$), 7.34 (d, $J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{dd}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.1,161.8,149.2,145.0,137.9,116.4,112.9,108.2,91.4,87.1$, 84.1, 80.2, 61.1, 51.3, 27.0, 25.2. HRMS-ESI m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$ 391.1112; found 391.1114.

Methyl(E)-3-(2,4-dioxo-1-((6aR,8R,9aS)-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-1,2,3,4-tetrahydropyrimidin-5yl)acrylate (3ga)

3ga was obtained following the general procedure \mathbf{A} from $\mathbf{1 g}$ on 0.1 mmol scale. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(25 / 1)$ as the eluent, 3ga was obtained as a white solid ($25.0 \mathrm{mg}, 45 \%$). mp $70.1-75.8^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-60.36$ (c 0.550 , $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.70(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=7.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.51(\mathrm{~m}, 1 \mathrm{H})$, 4.04 (dd, $J=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (s, 3H), 2.58-2.52 (m, 1H), 2.38-2.29 (m, 1H), 1.11-0.94 (m, 28H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.1,161.7,149.0,144.4,138.0,116.5,108.1,84.6,84.4,70.1,61.8$, $51.3,17.4,17.2(2 \mathrm{C}), 17.1,16.9,16.9,16.8,12.7,12.5,12.2,11.9$. HRMS-ESI m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 577.2372$; found 577.2375.

Methyl($E)$-3-(1-((2R,3R,4R)-3-fluoro-4-hydroxy-5-((((S)-(((S)-1-isopropoxy-1-

 oxopropan-2-yl)amino)(phenoxy)phosphoryl)oxy)methyl)-3-methyltetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ha)

3ha was obtained following the general procedure \mathbf{A} from $\mathbf{1 h}$ on 0.1 mmol scale. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(15 / 1)$ as the eluent, 3ha was obtained as a faint yellow solid ($30.7 \mathrm{mg}, 50 \%$). $\mathrm{mp} 95.0-98.4^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+8.79$ (c 0.633 , MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.95$ (s, 1H), 7.44-7.31 (m, 3H), 7.27 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , MeOD) δ-161.9. ${ }^{31}$ P NMR (162 MHz , MeOD) $\delta 4.0 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) δ $174.4,174.3,169.6,152.0,152.0,139.1,130.8,130.4,126.3,121.6,121.5,119.4,116.2$, $111.2,102.4,70.2,52.0,51.8,25.3,21.9,21.9,20.5(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 17.0(\mathrm{~d}, J=25.7$ $\mathrm{Hz})$. HRMS-ESI m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{FN}_{3} \mathrm{NaO}_{11} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 636.1729$; found 636.1725 .
dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl
phosphate (3ia)

3ia was obtained following the general procedure \mathbf{A} from $\mathbf{1 i}$ on 0.2 mmol scale with mixed solvent of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(10 / 1, \mathrm{v} / \mathrm{v})$. After purification by reverse-phase column chromatography (C 18 Spherical silica) using $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as the eluent, 3ia was obtained as a white solid ($9.8 \mathrm{mg}, 24 \%$). mp 196.0-200.1 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-51.652$ (c 0.575 , $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~s}, 1 \mathrm{H}), 4.20-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 0.7 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 170.1,163.4,150.6,143.6,137.8,117.9,109.9,89.1,83.3$, 74.1, 69.5, 63.9, 52.1. HRMS-ESI m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{NaO}_{11} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 431.0462$; found 431.0463 .

Ethyl (E)-3-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ab) ${ }^{[4]}$

3ab was obtained following the general procedure \mathbf{A} from 1a. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 3ab was obtained as a white solid ($24.0 \mathrm{mg}, 70 \%$). mp 198.2-200.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-66.53(\mathrm{c} 0.473, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=$ $12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 169.2,163.7,151.3,144.7,138.4,119.0,110.4,91.2,86.2,76.2$, 70.6, 61.6, 61.5, 14.6. HRMS-ESI m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 365.0955$; found 365.0956 .

Tert-butyl(E)-3-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)
tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ac) ${ }^{[5]}$

3ac was obtained following the general procedure \mathbf{A} from 1a. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 3ac was obtained as a white solid ($27.4 \mathrm{mg}, 74 \%$). mp 165.3-167.3 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-28.39$ (c $0.830, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $10.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 166.1,161.7,149.5,143.6,136.8,118.6,108.3$, 88.6, 84.7, 79.6, 73.8, 69.0, 60.2, 27.9(3C). HRMS-ESI m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{8}$ $[\mathrm{M}+\mathrm{Na}]^{+} 393.1268$; found 393.1270.

Benzyl(E)-3-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-

(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5yl)acrylate (3ad) ${ }^{[5]}$

3ad was obtained following the general procedure \mathbf{A} from 1a. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, $\mathbf{3 a d}$ was obtained as a white solid ($27.0 \mathrm{mg}, 67 \%$). mp $179.6-183.7^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-39.29(\mathrm{c} 0.330, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.69$ (s, 1H), 8.51 (s, 1H), 7.42-7.30 (m, 6H), 6.89 (d, $J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89-3.84 (m, 1H), 3.77-3.68 (m, 1H), 3.59 (ddd, $J=12.2,4.8,3.2$ $\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 166.5, 161.7, 149.4, 144.1, 138.3, 136.3, 128.4, 128.0, 127.9, 116.2, 108.1, 88.6, 84.6, 73.8, 68.9, 65.3, 60.1. HRMS-ESI m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 427.1112$; found 427.1118 .

Methyl(E)-3-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxy methyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)but-2enoate (3ae)

3ae was obtained following the general procedure \mathbf{A} from 1a. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 3ae was obtained as a white solid ($18.1 \mathrm{mg}, 53 \%$). mp 163.9-168.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-27.14$ (c $\left.0.280, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.54$ (s, 1H), 8.33 ($\mathrm{s}, 1 \mathrm{H}$), 6.77 (s, 1H), 5.80 (d, $J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.55(\mathrm{~m}, 5 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 166.9,161.7,149.6,147.6,140.6,116.7,113.2,88.7,84.7,74.3,69.5,60.1,50.9,16.5$. HRMS-ESI m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 365.0955$; found 365.0961.

1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)pyrimidine-2,4(1H,3H)-dione (3af) ${ }^{[6]}$

3af was obtained following the general procedure \mathbf{A} from 1a under O_{2} at $90^{\circ} \mathrm{C}$. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 3af was obtained as a yellow solid ($15.5 \mathrm{mg}, 44 \%$). $\mathrm{mp} 273.9-276.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-3.89(\mathrm{c} 0.300$, MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.89$ (s, 1H), 8.92 (s, 1H), 7.13 ($\left.\mathrm{s}, 1 \mathrm{H}\right), 5.86$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07$ (dd, $J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 171.0, 170.9, 161.4, 149.2, 143.1, 135.7, 122.7, 103.6, 88.8, 85.2, 74.1, 70.3, 61.7, 23.6. HRMS-ESI m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{8}$ $[\mathrm{M}+\mathrm{Na}]^{+} 376.0751$; found 376.0748 .

1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((E)styryl) pyrimidine-2,4(1H,3H)-dione (3ag) ${ }^{[7]}$

3ag was obtained following the general procedure \mathbf{A} from 1a under O_{2} at $90^{\circ} \mathrm{C}$. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10/1) as the eluent, 3ag
was obtained as a yellow solid ($20.8 \mathrm{mg}, 60 \%$). mp 133.7-137.9 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-50.11$ (c $0.300, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.51(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.328(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.73(\mathrm{~m}$, $1 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 162.3,149.8,138.1,137.5$, 128.8(2C), 127.8, 127.5, 126.1(2C), 120.9, 110.8, 88.4, 84.7, 74.0, 69.5, 60.5. HRMSESI m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 369.1057$; found 369.1061.

1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((E)-4-(trifluoromethyl)styryl) pyrimidine-2,4(1H,3H)-dione (3ah) ${ }^{[8]}$

3ah was obtained following the general procedure A from 1a under O_{2} at $90^{\circ} \mathrm{C}$.. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 3ah was obtained as a beige solid ($12.4 \mathrm{mg}, 30 \%$) $\mathrm{mp} 202.5-207.3^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-52.27(\mathrm{c} 0.383$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.64(\mathrm{~m}, 4 \mathrm{H})$, 7.47 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.01(\mathrm{~m}, 2 \mathrm{H})$, $3.91-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO) $\delta-60.8 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) δ 162.1, 149.7, 141.6, 139.3, 127.4, 127.0, 126.5, $125.8,125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 124.4\left(\mathrm{~m}, J_{\mathrm{C}-\mathrm{F}}=270.0 \mathrm{~Hz}\right), 124.1,110.2,88.4,84.6$, 73.9, 69.3, 60.3. HRMS-ESI m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 437.0931$; found 437.0934.

1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((E)-2-(phenylsulfonyl)vinyl)pyrimidine-2,4(1H,3H)-dione (3ai)

3ai was obtained following the general procedure \mathbf{A} from 1a. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10/1) as the eluent, 3ai was obtained as a white solid ($20.5 \mathrm{mg}, 50 \%$). mp 234.0-235. $8^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-52.19(\mathrm{c} 0.350, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{dd}, J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 161.7,149.7,145.9$, $141.0,135.9,133.5,129.7,127.0,125.5,106.5,88.8,84.6,73.8,68.8,60.1$. HRMSESI m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 433.0676$; found 433.0682.

(E)-2-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-

 2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)ethene-1-sulfonyl fluoride (3aj)

3aj was obtained following the general procedure \mathbf{A} from 1a. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 3aj was obtained as a yellow solid ($9.2 \mathrm{mg}, 26 \%$). mp $162.5-166.3^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}-17.81(\mathrm{c} 0.640, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.76$ (s, 1H), 7.61 (dd, $J=15.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (d, $J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}$, $J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{MeOD}$) δ 60.4 (s). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 163.1,150.9,148.9,143.3,117.8(\mathrm{~d}, J=27.4$ $\mathrm{Hz}), 107.7,91.6,86.1,76.3,70.2,61.3$. HRMS-ESI m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{NaO}_{8} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 375.0269$; found 375.0265 .

Ethyl (E)-3-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3bb) ${ }^{[9]}$

3bb was obtained following the general procedure \mathbf{A} from 1b. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, 3bb was obtained as a white solid ($23.4 \mathrm{mg}, 72 \%$). mp $167.5-169.4^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+1.00(\mathrm{c} 0.400, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.65$ (s, 1H), 8.41 (s, 1H), 7.35 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.69-3.53 (m, 2H), 2.24-2.11 (m, 2H), $1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD) $\delta 169.3,163.7,151.1,144.7,138.6,118.9,110.4,89.2,87.1,71.7,62.4,61.5$,
41.9, 14.6. HRMS-ESI m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$349.1006; found 349.1004 .

Tert-butyl(E)-3-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-

 yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3bc) ${ }^{[10]}$

3be was obtained following the general procedure \mathbf{A} from 1b. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, 3bc was obtained as a white solid ($24.2 \mathrm{mg}, 68 \%$) . mp $105.8-107.4^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+0.40(\mathrm{c} 0.420, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.44$ ($\mathrm{s}, 1 \mathrm{H}$), $7.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, $J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.86 (dd, $J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.49$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 168.7,163.7,151.1,144.4,137.5,120.8,110.5$, 89.2, 87.0, 81.5, 71.7, 62.4, 41.9, 28.4. HRMS-ESI m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{7}$ $[\mathrm{M}+\mathrm{Na}]^{+} 377.1319$; found 377.1322 .

Benzyl(E)-3-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3bd)

3bd was obtained following the general procedure \mathbf{A} from 1b. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, 3bd was obtained as a white solid ($23.7 \mathrm{mg}, 61 \%$). mp $89.6-90.3^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+1.11$ (c $0.330, \mathrm{MeOH}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.49$ (s, 1H), 7.44 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H})$, $6.94(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{dt}, J=6.1,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.2$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 169.0,163.7,151.1$, 144.9, 139.0, 137.7, 129.5(2C), 129.2(2C), 118.5, 110.4, 89.2, 87.1, 71.7, 67.2, 62.4, 41.9. HRMS-ESI m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 411.1163$; found 411.1171.

Methyl (E)-3-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)but-2-enoate (3be)

3be was obtained following the general procedure \mathbf{A} from 1b. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, 3be was obtained as a white solid (13.4 mg, 41%). mp $175.4-176.7{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+6.67(\mathrm{c} 0.270, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-$ $4.40(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=$ $12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\mathrm{MeOD}) \delta 169.1,163.7,151.4,149.3,141.4,118.9,116.1,89.2,87.0,72.1,62.5,51.5$, 41.9, 17.4. HRMS-ESI m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 349.1006$; found 349.1009 .

1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(1-methyl-

 2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)pyrimidine-2,4(1H,3H)-dione (3bf) ${ }^{[6]}$

3bf was obtained following the general procedure \mathbf{A} from $\mathbf{1 b}$ under O_{2} at $90^{\circ} \mathrm{C}$. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, 3bf was obtained as a yellow solid ($12.5 \mathrm{mg}, 37 \%$) . $\mathrm{mp}>300^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-20.42$ (c 0.360 , DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.84(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.15$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 1 \mathrm{H})$, $3.91-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.07(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 171.1,171.0,161.6,149.0,143.1,135.9,122.2$, $103.2,88.1,85.7,70.7,61.7,23.6$. HRMS-ESI m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ 360.0802 ; found 360.0804 .

1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((E)-styryl)pyrimidine-2,4(1H,3H)-dione (3bg) ${ }^{[11]}$

$\mathbf{3 b g}$ was obtained following the general procedure \mathbf{A} from $\mathbf{1 b}$ under O_{2} at $90^{\circ} \mathrm{C}$. After
purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, $\mathbf{3 b g}$ was obtained as a faint yellow solid ($17.2 \mathrm{mg}, 52 \%$). $\mathrm{mp} 99.8-101.4^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-3.49$ (c $0.430, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.41(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=6.2$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=12.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.25$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) δ 164.5, 151.4, 139.1, 138.8, 130.3, 129.6(2C), 128.5, 127.3(2C), 121.0, 113.3, 89.0, 86.7, 71.9, 62.6, 41.7. HRMS-ESI m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$353.1108; found 353.1112.

1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((E)-2-(phenylsulfonyl)vinyl)pyrimidine-2,4(1H,3H)-dione (3bi)

3bi was obtained following the general procedure \mathbf{A} from 1b. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, 3bi was obtained as a yellow solid ($15.4 \mathrm{mg}, 39 \%$). $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+0.71$ (c 0.380 , MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O) ~ \delta 11.73(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.68(\mathrm{~m}$, $1 \mathrm{H}), 7.68-7.61$ (m, 2H), 7.46 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{q}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD) $\delta 163.4,150.9,146.9,142.6,136.9,134.5,130.5(2 \mathrm{C}), 128.4(2 \mathrm{C}), 127.8,108.6$, 89.2, 87.2, 71.5, 62.3, 41.9. HRMS-ESI m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 417.0727; found 417.0727.
(E)-2-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)ethene-1-sulfonyl fluoride (3bj)

3bj was obtained following the general procedure \mathbf{A} from 1b. After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(12 / 1)$ as the eluent, $\mathbf{3 b j}$ was obtained as a white solid ($8.1 \mathrm{mg}, 24 \%$). mp 193.3-194.2 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+5.68(\mathrm{c} 0.370, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=14.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=$ $15.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dt}, J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=$ $6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=12.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-$ $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($\left.377 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 60.4(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 163.1,150.7,149.0,143.4,117.7(\mathrm{~d}, J=27.6 \mathrm{~Hz}), 107.6,89.3$, 87.6, 71.4, 62.2, 42.1. HRMS-ESI m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 359.0320$; found 359.0315 .

3.1 Applications of the methodology

a) Gram scale preparation of 3aa

General procedure B (gram scale): A 250 mL reaction tube was charged with substrate 1 a ($1.2 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CO}_{3}{ }^{t} \mathrm{Bu}$ ($10 \mathrm{mmol}, 2.0$ equiv.) (50% solution in aromatic free mineral spirit), $\operatorname{PivOH}(12.5 \mathrm{mmol}$, 2.5 equiv.) and $\mathbf{2 a}$ ($10 \mathrm{mmol}, 2.0$ equiv.), then $20 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ were added to dissolved the mixture. The reaction solution was bubbled with O_{2} for 30 min . The tube was sealed with a Teflon-lined cap and the reaction mixture was then placed to a pre-heated oil bath to stir at $90^{\circ} \mathrm{C}$ for 15 h (Caution: The tube was carefully capped and covered with safety shield.). The reaction mixture was then cooled to room temperature. It was filtered through a pad of celite, and then washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(50 / 1$ to $25 / 1)$ as the eluent to give the pure product 3aa.

b) On-water reaction a

		$\begin{gathered} \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%) \\ \mathrm{MeCO}_{3}{ }^{\mathrm{Bu}}(2.0 \text { equiv.) } \\ \mathrm{PivOH} \text { (2.0 equiv.) } \\ \left.\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \text { (} 0.25 \mathrm{M}\right) \\ 70^{\circ} \mathrm{C}, 12 \mathrm{~h} \end{gathered}$		$\begin{aligned} & \mathrm{R}^{1}=\mathrm{OH}, \mathbf{3 a a} \\ & \mathrm{R}^{1}=\mathrm{H}, \mathbf{3} \mathbf{b a} \end{aligned}$	
Entry	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	Yield ${ }^{\text {b }}$ of 3		Recovery ${ }^{\text {b }}$ of 1	
		3 aa	3ba	1 a	1b
1	10:1	61\%	61\%	32%	23\%
2	7:1	48\%	52\%	48\%	35\%
3	5:1	39\%	38\%	60\%	55\%
4	3:1	23\%	26\%	58\%	65\%
5	1:1	5\%	9\%	95\%	90\%
6	1:3	2\%	2%	98\%	98\%
7	$\mathrm{H}_{2} \mathrm{O}$	2\%	2\%	98\%	94\%
8	$\mathrm{CH}_{3} \mathrm{CN}$	79\%	73\%	13\%	8\%

${ }^{\text {a }}$ Conditions: uridine 1a or $\mathbf{1 b}(0.1 \mathrm{mmol})$, methyl acrylate 2a $(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01$ $\mathrm{mmol}), \mathrm{MeCO}_{3}{ }^{t} \mathrm{Bu}(0.2 \mathrm{mmol}), \mathrm{PivOH}(0.2 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}, 0.4 \mathrm{~mL})$ under air at $70{ }^{\circ} \mathrm{C}$ for 12 hours. ${ }^{\mathrm{b}}$ Yields and recovery were determined by LC-MS. ${ }^{\mathrm{c}}$ Isolated yield.

General procedure C ($\mathbf{0 . 1} \mathbf{~ m m o l}$ scale): A 10 mL reaction tube was charged with substrate $1 \mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathrm{CH}_{3} \mathrm{CO}_{3}{ }^{t} \mathrm{Bu}$ ($64 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) (50% solution in aromatic free mineral spirit), PivOH ($20.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv.) and $\mathbf{2 a}(18 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.), then 0.35 $\mathrm{mLCH}_{3} \mathrm{CN}$ and $0.05 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added to dissolve the above mixture. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath to stir at $70^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then cooled to room temperature. It was filtered through a pad of celite and washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (preparative TLC) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ to give the pure product 3aa.
c) Derivative of 3aj ${ }^{[12,13]}$

A 10 mL sample vial was charged with $\mathbf{3 a j}$ ($35 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.), p methoxyphenol ($13.6 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(65.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv.), and then $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added to dissolve the above mixture. The reaction was stirred at ambient temperature for 1 h . Then it was filtered through a pad of celite and washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (preparative TLC) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=\right.$ 10:1) to give the pure product $\mathbf{5 a}$ as a white solid ($26.8 \mathrm{mg}, 56 \%$ yield).

4-methoxyphenyl (E)-2-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl) ethene-1sulfonate (5a)

After purification by PTLC (preparative TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 / 1)$ as the eluent, 5a was obtained as a white solid ($26.8 \mathrm{mg}, 56 \%$). mp 180.5-184.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-17.36$ (c $0.457, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.84$ (s, 1H), 8.54 ($\mathrm{s}, 1 \mathrm{H}$), 7.46 (d, J $=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.49 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dd, J $=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.72-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 161.6,157.9$, $149.3,146.6,142.5,139.5,123.5,118.4,114.9,106.1,88.9,84.6,73.8,68.8,60.1,55.5$. HRMS-ESI m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{10} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 479.0731$; found 479.0740 .

4. References

[1] D. Y. Piao, A. Basavapathruni, P. Iyidogan, G. X. Dai, W. Hinz, A. S. Ray, E. Murakami, J. Y. Feng, F. You, G. E. Dutschman, D. J. Austin, K. A. Parker and K. S. Anderson, Bioorg. Med. Chem. Lett., 2013, 23, 1511-1518.
[2] S. Bhilare, V. Gayakhe, A. V. Ardhapure, Y. S. Sanghvi, C. Schulzke, Y. Borozdina and A. R. Kapdi, RSC. Adv., 2016, 6, 83820-83830.
[3] Y. L. Ding, J. L. Girardet, Z. Hong, S. Z. Shaw and N. H. Yao, Heterocycle., 2006, 68, 521-530.
[4] R. Kumar, L. H. Xu, E. E. Knaus, L. I. Wiebe, D. R. Tovell, D. L. Tyrrell and T. M. Allen, J. Med. Chem., 1990, 33, 717-723.
[5] R. F. Whale, P. L. Coe and R. T. Walker, Nucleosides \& Nucleotides., 1991, 10, 1615-1624.
[6] T. Itahara, Chem. Lett., 1986, 15, 239-242.
[7] S. Izuta and M. Saneyoshi, Chem. Pharm. Bull., 1987, 12, 4829-4838.
[8] M. Segal and B. Fischer, Org. Biomol. Chem., 2012, 10, 1571-1580.
[9] W. E. Herve and C. Len, RSC Adv., 2014, 4, 46926-49929.
[10] V. Aucagne, S. B. Raboin, P. Guenot and L. A. Agrofoglio, J. Comb. Chem., 2004, 6, 717-723.
[11] V. Gayakhe, A. Ardhapure, A. R. Kapdi, Y. S. Sanghvi, J. L. Serrano, L. García, J. Peréz, J. García, G. Sánchez, C. Fischer and C. Schulzke, J. Org. Chem., 2016, 81, 2713-2729.
[12] T. S. B. Lou, S. W. Bagley and M. C. Willis, Angew. Chem. Int. Ed., 2019, 58, 18859-18863.
[13] X. Y. Chen, Y. C. Wu, J. Zhou, P. Wang and J. Q. Yu, Org. Lett., 2019, 21, 14261429.

5. NMR Spectra

190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

3ba
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$)

${ }^{19}$ F NMR (376 MHz , DMSO)

[^0](

						1		,				1			1				
190	180	170	160	150	140	130	120	110	100	$\begin{array}{r} 90 \\ \text { (ppa) } \end{array}$	80	70	60	50	40	30	20	10	0

(
${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$)

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

$$
{ }^{13} \mathrm{CNMR}
$$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$)

${ }^{19}$ F NMR $(376 \mathrm{MHz}$, MeOD)

$\stackrel{\text { 弇 }}{ }$

${ }^{31} \mathrm{P}$ NMR (162 MHz , MeOD)

[^1]

3ha
${ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD)

190	180	170	160	150	140	130	120	110	100		80	70	60	50	40				
	180					130	120	110		(ppm)	80	70	60	5	40	3	2	10	0

3ia
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

	 응 욱				

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD)

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)

3ad
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)

$\underset{\sim}{\text { Q }}$

3ah
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO)

${ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO)

안	$\stackrel{8}{\circ}$	4	
$\stackrel{\text { ® }}{ }$	+	-	
־	$\stackrel{T}{1}$	TT	¢T¢5T

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)

${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{MeOD}$)
\qquad

3aj
${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD)

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

[^2]

3be
${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD)

 d... l

in

3be
${ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD)

[^3]

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)

\qquad

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

n
+
0
1
i

3bj
${ }^{19}$ F NMR (377 MHz , MeOD)

${ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD)

		1							1				1						
190	180	170	160	150	140	130	120	110	${ }_{\text {fl }}^{100}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)

[^0]:

[^1]:

[^2]:

[^3]: $\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { fl (ppm) }\end{array}$

