Supporting Information

Palladium-catalyzed C–H Olefination of Uridine, Deoxyuridine, Uridine Monophosphate and Uridine Analogues

Qin Zhao, Ruoqian Xie, Yuxiao Zeng, Wanlu Li, Guolan Xiao, Yangyan Li and Gang Chen

Table of Contents

1. General information	2
2. Details for the direct C–H olefinations	3
2.1 Optimization of C-H olefinations	3
Table S1. Oxidant screening	3
Table S2. Solvent screening	4
Table S3. Additive screening	5
Table S4. Ligand screening	6
Table S5. Atmosphere screening	7
Table S6. Temperature and Time screening	7
2.2. Substrate scope	8
Table S7. Substrate scope of the uridines	8
Table S8. Substrate scope of the alkenes	9
2.3 General procedure	9
3. Characterization data for compounds 3aa-3ia, 3ab-3aj, 3bb-3bj	
3.1 Applications of the methodology	
a) Gram scale preparation of 3aa	22
b) On-water reaction ^a	
c) Derivative of 3aj ^[12, 13]	23
4. References	
5. NMR Spectra	

1. General information

All the chemicals were purchased commercially and used without further purification. General reagents were obtained from Adamas, Leyan, Innochem, Laajoo and Bidepharm. Anhydrous solvents were obtained from J&K. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. ¹H NMR spectra were recorded on Bruker-400 MHz and Bruker-500 MHz instruments. When the ¹H NMR solvent was DMSO-d-6, chemical shifts were quoted in parts per million (ppm) referenced to 2.50 ppm for solvent DMSO-d-6. When the ¹H NMR solvent was Methanol-d-4, chemical shifts were quoted in parts per million (ppm) referenced to 3.31 ppm for solvent Methanol-d-4. When the ¹H NMR solvent was D₂O, chemical shifts were quoted in parts per million (ppm) referenced to 4.79 ppm for solvent D₂O. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiple, dd = double doublet, dt = doubletriplet. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker-400 instrument (101 MHz) and Bruker-500 instrument (126 MHz), and were fully decoupled by broad band proton decoupling. When the ¹³C NMR solvent was DMSO-d-6, chemical shifts were quoted in parts per million (ppm) referenced to 39.52 ppm for solvent DMSO-d-6. When the ¹³C NMR solvent was Methanol-d-4, chemical shifts were quoted in parts per million (ppm) referenced to 49.00 ppm for solvent Methanol-d-4. Reverse-phase column chromatography was performed on SepaBean® machine T from Santai Technologies in Changzhou, China, using ODS 45-60 mm C18 Spherical silica. The high-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Optical rotations were measured on an Anton Paar MCP100 automatic polarimeter using a 100 mm path-length cell at 589 nm. Melting points were measured with microscope WRX-4 (Shanghai Yice).

2. Details for the direct C-H olefinations

2.1 Optimization of C-H olefinations

Table S1. Oxidant screening

Entry ^a	[O]	Yield ^b of 3aa	Recovery ^b of 1a
1	PhCO3'Bu	24%	31%
2	MeCO ₃ ^t Bu	37%	60%
3	DTBP	13%	85%
4	TBHP	20%	73%
5	PhI(OAc) ₂	14%	43%
6	Oxone	9%	78%
7	DLP	1%	93%
8	Benzoquinone	1%	23%
9	<i>m</i> -CPBA	0%	23%
10	(NH4)2S2O8	9%	5%
11	H ₂ O ₂	8%	91%
12	Cu(OAc) ₂	0%	100%
13	CaOTf	0%	97%
14	AgOAc	2%	97%

^a Conditions: uridine **1a** (0.1 mmol), methyl acrylate **2a** (0.2 mmol), Pd(OAc)₂ (0.01 mmol), oxidant (0.2 mmol), CH₃CN (0.4 mL) under air at 70 $\,^{\circ}$ C for 12 hours. ^b Yields and recovery were determined by LC-MS.

Table S2. Solvent screening

Entry ^a	Solvent	Yield ^b of 3aa	Recovery ^b of 1a
1	CH ₃ CN	37%	60%
2	Benzonitrile	2%	42%
3	H ₂ O	2%	98%
4	MeOH	< 1%	82%
5	CH ₃ CH ₂ OH	0%	83%
6	t-BuOH	6%	61%
7	t-AmlyOH	6%	69%
8	Glycol	0%	98%
9	Pyridine	0%	100%
10	DMSO	7%	91%
11	DMA	18%	77%
12	HFIP	17%	72%
13	CF ₃ CH ₂ OH	2%	76%
14	CH ₃ COOH	59%	24%
15	HCl	27%	0%
16	THF	2%	47%
17	Dioxane	16%	75%
18	Toluene	0%	44%
19	Cyclohexane	0%	100%
20	DCE	0%	99%

^a Conditions: uridine **1a** (0.1 mmol), methyl acrylate **2a** (0.2 mmol), Pd(OAc)₂ (0.01 mmol), MeCO₃'Bu (0.2 mmol), solvent (0.4 mL) under air at 70 °C for 12 hours. ^b Yields and recovery were determined by LC-MS.

Table S3. Additive screening

	O U N	F M a VH ℃ + <u>CO_Me</u>	Pd(OAc) ₂ (10 mol%) eCO ₃ ⁴ Bu (2.0 equiv.) idditive (2.0 equiv.) CH ₃ CN (0.25 M) 70 °C, 12 h	MeO ₂ C NH
HO-		2.0 equiv. 2a		HO
	ÓН ÓН 1а	20		ÓН ÓН Заа
-	Entry ^a	Additive	Yield ^b of 3aa	Recovery ^b of 1a
	1	AcOH	62%	26%
	2	CH ₃ CH ₂ C(CH ₃) ₂ COOH	76%	13%
	3	(CH ₃) ₂ CHCOOH	75%	22%
	4	<i>p</i> -CF ₃ (C ₆ H ₄)CH ₂ COOH	42%	35%
	5	PivOH	82%	16%
	6	TFA	2%	80%
	7	HFIP	28%	69%
	8	HC1	8%	60%
	9	K ₂ CO ₃	1%	99%
	10	Li ₂ CO ₃	0%	100%
	11	Cs ₂ CO ₃	0%	100%
	12	KH ₂ PO ₄	14%	83%
	13	K ₂ HPO ₄	13%	61%
	14	NaHCO ₃	1%	99%
	15	NaH ₂ PO ₄	17%	80%
	16	LiF	0%	98%
	17	CsF	0%	100%
	18	MgCl ₂	0%	100%

^a Conditions: uridine **1a** (0.1 mmol), methyl acrylate **2a** (0.2 mmol), Pd(OAc)₂ (0.01 mmol), MeCO₃'Bu (0.2 mmol), additive (0.2 mmol), CH₃CN (0.4 mL) under air at 70 $^{\circ}$ C for 12 hours. ^b Yields and recovery were determined by LC-MS.

Pd(OAc)₂ (10 mol%) MeCO3^tBu (2.0 equiv.) PivOH (2.0 equiv.) CH₃CN (0.25 M) 70 °C, 12 h MeO₂C Ligand (15 mol%) CO₂Me ΗΟ HC 2.0 equiv. òн óн 2a òн óн 1a 3aa Yield^b of 3aa Recovery^b of 1a Entry^a ligand 79% 1 18% -2 Ac-Leu-OH 51% 10% 3 Ac-Gly-OH 67% 22% 4 Ac-Val-OH 78% 14% 5 Ac-Pro-OH 70% 24% 27% Ac-Phe-OH 60% 6 7 Ac-Cys-OH 93% 5% Z-Phe-OH 8 28% 72% 9 Z-Ala-OH 64% 25% 10 Z-Gly-OH 63% 27% Boc-Gly-OH 26% 11 64% Boc-Phe-OH 35% 61% 12 74% 14% 13 Boc-Leu-OH N N CF₃ H II O 3aa/1a 0%/84% 32%/68% 65%/35% 48%/18% 5%/81% 6%/21% 33%/20% 4%/84%

Table S4. Amino acid and pyridine ligand screening

^a Conditions: uridine **1a** (0.1 mmol), methyl acrylate **2a** (0.2 mmol), $Pd(OAc)_2$ (0.01 mmol), MeCO₃'Bu (0.2 mmol), PivOH (0.2 mmol), CH₃CN (0.4 mL), Ligand (0.015 mmol) under air at 70 °C for 12 hours.

Table S5. Atmosphere screening

^a Conditions: uridine **1a** (0.1 mmol), methyl acrylate **2a** (0.2 mmol), Pd(OAc)₂ (0.01 mmol), MeCO₃'Bu (0.2 mmol), PivOH (0.2 mmol), CH₃CN (0.4 mL) under air at 70 °C for 12 hours. ^b The reaction was carried out under an argon atmosphere. ^c The reaction was carried out under an oxygen atmosphere. ^d Yields and recovery were determined by LC-MS.

^a Conditions: uridine **1a** (0.1 mmol), methyl acrylate **2a** (0.2 mmol), Pd(OAc)₂ (0.01 mmol), MeCO₃'Bu (0.2 mmol), PivOH (0.2 mmol), CH₃CN (0.4 mL) under air. ^b Yields and recovery were determined by LC-MS.

2.2. Substrate scope

Table S7. Substrate scope of the uridines

^a Conditions: uracil-based nucleosides/nucleotides **1** (0.1 mmol), methyl acrylate **2a** (2.0 equiv.), Pd(OAc)₂ (10 mol%), CH₃CO₃'Bu (2.0 equiv.), PivOH (2.0 equiv.), CH₃CN (0.4 mL) under air at 70 °C for 12 hours. ^b Mixed solvents of CH₃CN and H₂O (10:1, v/v) was used. ^c Yield determined by LC-MS and compound not isolated.

Table S8. Substrate scope of the alkenes

^a Conditions: uridine **1a** or 2'-deoxyuridine **1b** (0.1 mmol), olefines **2** (2.0 equiv.), Pd(OAc)₂ (10 mol%), CH₃CO₃'Bu (2.0 equiv.), PivOH (2.0 equiv.), CH₃CN (0.4 mL) under air at 70 °C for 12 hours. ^b The reaction was carried out under O₂ at 90 °C for 12 hours. ^c Yield determined by LC-MS and compound not isolated. Isolated yield.

2.3 General procedure

General procedure A (0.1 mmol scale): A 10 mL reaction tube was charged with substrate 1a-1h (0.1mmol, 1.0 equiv.), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 10 mol%), $CH_3CO_3'Bu$ (64 µL, 0.2 mmol, 2.0 equiv.) (50% solution in aromatic free mineral spirit), PivOH (20.4 mg, 0.2 mmol, 2.0 equiv.) and 2a-2j (0.2 mmol, 2.0 equiv.), then 0.4 mL CH₃CN was added to dissolved the above mixture. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath to stir at 70 °C for 12 h. The reaction mixture was then cooled to room temperature. It was filtered through a pad of celite and washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (preparative TLC) (CH₂Cl₂:MeOH = 25:1 to 10:1) or reverse-phase column chromatography (C18 Spherical silica) (MeOH: H₂O = 0:1 to

1:1) to give the pure products 3aa-3ia, 3ab-3aj, 3bb-3bj.

3. Characterization data for compounds 3aa-3ia, 3ab-3aj, 3bb-3bj

Methyl(*E*)-3-(1-((*2R*,*3R*,*4S*,*5R*)-3,4-dihydroxy-5-(hydroxy methyl) tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3aa)^[1]

3aa was obtained following the general procedure **A** from **1a**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3aa** was obtained as a yellow solid (23.6 mg, 72%), gram scale (5 mmol, 1.02 g, 62%). mp 180.7-182.6 °C; $[\alpha]_{D}^{25}$ -41.58 (c 0.670, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.69 (s, 1H), 8.50 (s, 1H), 7.34 (d, *J* = 16.0 Hz, 1H), 6.84 (d, *J* = 15.6 Hz, 1H), 5.76 (d, *J* = 4.0 Hz, 1H), 5.46 (d, *J* = 4.0 Hz, 1H), 5.31 (t, *J* = 5.0 Hz, 1H), 5.09 (d, *J* = 3.6 Hz, 1H), 4.10–4.04 (m, 1H), 4.04–3.97 (m, 1H), 3.90–3.84 (m, 1H), 3.76–3.69 (m, 1H), 3.68 (s, 3H), 3.63–3.56 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 167.2, 161.8, 149.5, 144.0, 138.0, 116.2, 108.2, 88.6, 84.6, 73.9, 69.0, 60.2, 51.3. HRMS-ESI m/z calcd for C₁₃H₁₆N₂NaO₈ [M+Na]⁺ 351.0799; found 351.0798.

Methyl (*E*)-3-(1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ba)^[2]

3ba was obtained following the general procedure **A** from **1b**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3ba** was obtained as a yellow solid (19.6mg, 69%). mp 97.3-100.5 °C; $[\alpha]_D^{25}$ -1.86 (c 0.700, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.63 (s, 1H), 8.42 (s, 1H), 7.37 (d, *J* = 15.6 Hz, 1H), 6.85 (d, *J* = 15.6 Hz, 1H), 6.13 (t, *J* = 6.4 Hz, 1H), 5.26 (d, *J* = 4.4 Hz, 1H), 5.17 (t, *J* = 5.2 Hz, 1H), 4.28–4.23 (m, 1H), 3.83–3.77 (m, 1H), 3.68 (s, 3H), 3.67–3.62 (m, 1H), 3.61–3.54 (m, 1H), 2.24–2.10 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ 169.7, 163.6, 151.1, 144.8, 138.8, 118.4, 110.4, 89.2, 87.1, 71.7, 62.4, 52.0, 41.9. HRMS-ESI m/z calcd for C₁₃H₁₆N₂NaO₇ [M+Na]⁺ 335.0850; found 335.0852.

Methyl(*E*)-3-(1-((*2R*,*3R*,*4R*,*5R*)-3-fluoro-4-hydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ca)

3ca was obtained following the general procedure **A** from **1c** on 0.1 mmol scale. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (15/1) as the eluent, **3ca** was obtained as a faint yellow solid (26.4 mg, 80%). mp 142.7-144.4 °C; $[\alpha]_D^{25}$ -58.49 (c 0.330, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.71 (s, 1H), 8.53 (s, 1H), 7.31 (d, J = 16.0 Hz, 1H), 6.81 (d, J = 16.0 Hz, 1H), 5.89 (d, J = 16.8 Hz, 1H), 5.64 (d, J = 6.4 Hz, 1H), 5.49 (t, J = 4.4 Hz, 1H), 5.06 (dd, J = 52.8, 4.0 Hz, 1H), 4.26–4.11 (m, 1H), 3.95–3.81 (m, 2H), 3.70–3.60 (m, 4H). ¹⁹F NMR (376 MHz, DMSO) δ -202.05. ¹³C NMR (101 MHz, DMSO) δ 167.2, 161.9, 149.1, 143.5, 138.0, 116.2, 108.0, 93.8 (d, J = 184.3 Hz), 87.6 (d, J = 29.9 Hz), 83.1, 66.7 (d, J = 16.2 Hz), 58.7, 51.4. HRMS-ESI m/z calcd for C₁₃H₁₅FN₂NaO₇ [M+Na]⁺ 353.0755; found 353.0756.

Methyl(*E*)-3-(1-((*2R*,*3R*,*4R*,*5R*)-4-hydroxy-5-(hydroxymethyl)-3methoxytetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5yl)acrylate (3da)^[3]

3da was obtained following the general procedure **A** from **1d** on 0.2 mmol scale. After purification by reverse-phase column chromatography (C18 Spherical silica) using MeOH/H₂O as the eluent, **3da** was obtained as a white solid (59.5 mg, 87%). mp 214.7-217.3 °C; $[\alpha]_{D}^{25}$ -13.524 (c 0.175, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.69 (s, 1H), 8.55 (s, 1H), 7.32 (d, *J* = 16.0 Hz, 1H), 6.83 (d, *J* = 16.0 Hz, 1H), 5.83 (d, *J* = 3.6 Hz, 1H), 5.42 (brs, 1H), 5.20 (d, *J* = 5.6 Hz, 1H), 4.20–4.10 (m, 1H), 3.90–3.81 (m, 2H), 3.74 (d, *J* = 12.0 Hz, 1H), 3.67 (s, 3H), 3.61 (d, *J* = 12.0 Hz, 1H), 3.39 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.2, 149.4, 143.7, 138.0, 116.2, 108.2, 86.8, 84.8, 83.0, 67.6, 59.7, 57.7, 51.3. HRMS-ESI m/z calcd for C₁₄H₁₈N₂NaO₈ [M+Na]⁺ 365.0955; found 365.0956.

(2R,3R,4R,5R)-2-(acetoxymethyl)-5-(5-((E)-3-methoxy-3-oxoprop-1-en-1-yl)-2,4dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3,4-diyl diacetate (3ea)

3ea was obtained following the general procedure **A** from **1e** on 0.2 mmol scale. After purification by PTLC (preparative TLC) using petroleum ether/ethyl acetate (2/3) as the eluent, **3ea** was obtained as a beige solid (46.5 mg, 51%). mp 104.2-106.6 °C; $[\alpha]_D^{25}$ -41.80 (c 0.500, MeOH); ¹H NMR (400 MHz, MeOD) δ 8.03 (s, 1H), 7.38 (d, *J* = 16.0 Hz, 1H), 6.94 (d, *J* = 16.0 Hz, 1H), 5.94 (d, *J* = 4.4 Hz, 1H), 5.56–5.49 (m, 1H), 5.43 (t, *J* = 5.8 Hz, 1H), 4.45–4.33 (m, 3H), 3.75 (s, 3H), 2.13–2.08 (m, 9H). ¹³C NMR (101 MHz, MeOD) δ 172.2, 171.4, 171.3, 169.5, 163.3, 150.8, 145.1, 138.4, 119.4, 111.0, 91.0, 81.4, 74.5, 71.4, 64.0, 52.1, 20.8, 20.4, 20.3. HRMS-ESI m/z calcd for C₁₉H₂₂N₂NaO₁₁ [M+Na]⁺ 477.1116; found 477.1113.

Methyl(*E*)-3-(1-((3a*R*,4*R*,6*R*,6a*R*)-6-(hydroxymethyl)-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2,4-dioxo-1,2,3,4tetrahydropyrimidin-5-yl)acrylate (3fa)

3fa was obtained following the general procedure **A** from **1f** on 0.1 mmol scale. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (22/1) as the eluent, **3fa** was obtained as a white solid (24.2 mg, 66%). mp 179.8-183.4 °C; $[\alpha]_{D}^{25}$ -40.36 (c 0.280, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.74 (s, 1H), 8.35 (s, 1H), 7.34 (d, *J* = 16.0 Hz, 1H), 6.85 (d, *J* = 16.0 Hz, 1H), 5.85 (d, *J* = 2.4 Hz, 1H), 5.24 (t, *J* = 5.2 Hz, 1H), 4.95 (dd, *J* = 6.4, 2.4 Hz, 1H), 4.77 (dd, *J* = 6.4, 3.6 Hz, 1H), 4.15–4.11 (m, 1H), 3.68 (s, 3H), 3.67–3.61 (m, 1H), 3.60–3.53 (m, 1H), 1.49 (s, 3H), 1.29 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 167.1, 161.8, 149.2, 145.0, 137.9, 116.4, 112.9, 108.2, 91.4, 87.1, 84.1, 80.2, 61.1, 51.3, 27.0, 25.2. HRMS-ESI m/z calcd for C₁₆H₂₀N₂NaO₈ [M+Na]⁺ 391.1112; found 391.1114.

Methyl(E)-3-(2,4-dioxo-1-((6aR,8R,9aS)-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ga)

3ga was obtained following the general procedure **A** from **1g** on 0.1 mmol scale. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (25/1) as the eluent, **3ga** was obtained as a white solid (25.0 mg, 45%). mp 70.1-75.8 °C; $[\alpha]_{D}^{25}$ -60.36 (c 0.550, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.70 (s, 1H), 8.06 (s, 1H), 7.31 (d, *J* = 16.0 Hz, 1H), 6.87 (d, *J* = 15.6 Hz, 1H), 6.00 (dd, *J* = 7.8, 3.4 Hz, 1H), 4.63–4.51 (m, 1H), 4.04 (dd, *J* = 12.2, 5.4 Hz, 1H), 3.95 (dd, *J* = 12.4, 3.2 Hz, 1H), 3.79–3.72 (m, 1H), 3.67 (s, 3H), 2.58–2.52 (m, 1H), 2.38–2.29 (m, 1H), 1.11–0.94 (m, 28H). ¹³C NMR (101 MHz, DMSO) δ 167.1, 161.7, 149.0, 144.4, 138.0, 116.5, 108.1, 84.6, 84.4, 70.1, 61.8, 51.3, 17.4, 17.2(2C), 17.1, 16.9, 16.9, 16.8, 12.7, 12.5, 12.2, 11.9. HRMS-ESI m/z calcd for C₂₅H₄₂N₂NaO₈Si₂ [M+Na]⁺ 577.2372; found 577.2375.

Methyl(*E*)-3-(1-((2*R*,3*R*,4*R*)-3-fluoro-4-hydroxy-5-((((*S*)-(((*S*)-1-isopropoxy-1-oxopropan-2-yl)amino)(phenoxy)phosphoryl)oxy)methyl)-3-methyltetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ha)

3ha was obtained following the general procedure **A** from **1h** on 0.1 mmol scale. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (15/1) as the eluent, **3ha** was obtained as a faint yellow solid (30.7 mg, 50%). mp 95.0-98.4 °C; $[\alpha]_D^{25}$ +8.79 (c 0.633, MeOH); ¹H NMR (400 MHz, MeOD) δ 7.95 (s, 1H), 7.44–7.31 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 7.0 Hz, 1H), 6.98 (d, *J* = 16.0 Hz, 1H), 6.17 (d, *J* = 11.6 Hz, 1H), 4.96–4.89 (m, 2H), 4.59–4.40 (m, 2H), 4.18–4.09 (m, 1H), 4.00–3.94 (m, 1H), 3.66 (s, 3H), 1.42–1.31 (m, 6H), 1.19 (dd, *J* = 6.0, 2.0 Hz, 6H). ¹⁹F NMR (376 MHz, MeOD) δ -161.9. ³¹P NMR (162 MHz, MeOD) δ 4.0. ¹³C NMR (101 MHz, MeOD) δ 174.4, 174.3, 169.6, 152.0, 152.0, 139.1, 130.8, 130.4, 126.3, 121.6, 121.5, 119.4, 116.2, 111.2, 102.4, 70.2, 52.0, 51.8, 25.3, 21.9, 21.9, 20.5 (d, *J* = 6.1 Hz), 17.0 (d, *J* = 25.7 Hz). HRMS-ESI m/z calcd for C₂₆H₃₃FN₃NaO₁₁P [M+Na]⁺ 636.1729; found 636.1725.

((2R,3S,4R,5R)-3,4-dihydroxy-5-(5-((E)-3-methoxy-3-oxoprop-1-en-1-yl)-2,4-

dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl phosphate (3ia)

3ia was obtained following the general procedure **A** from **1i** on 0.2 mmol scale with mixed solvent of CH₃CN/H₂O (10/1, v/v). After purification by reverse-phase column chromatography (C18 Spherical silica) using MeOH/H₂O as the eluent, **3ia** was obtained as a white solid (9.8 mg, 24%). mp 196.0-200.1 °C; $[\alpha]_D^{25}$ -51.652 (c 0.575, H₂O); ¹H NMR (400 MHz, D₂O) δ 8.22 (s, 1H), 7.48 (d, *J* = 15.6 Hz, 1H), 6.91 (d, *J* = 16.0 Hz, 1H), 5.98 (d, *J* = 4.8 Hz, 1H), 4.40 (t, *J* = 4.8 Hz, 1H), 4.33 (t, *J* = 4.6 Hz, 1H), 4.28 (s, 1H), 4.20–4.04 (m, 2H), 3.78 (s, 3H). ³¹P NMR (162 MHz, D₂O) δ 0.7. ¹³C NMR (101 MHz, D₂O) δ 170.1, 163.4, 150.6, 143.6, 137.8, 117.9, 109.9, 89.1, 83.3, 74.1, 69.5, 63.9, 52.1. HRMS-ESI m/z calcd for C₁₃H₁₇N₂NaO₁₁P [M+Na]⁺ 431.0462; found 431.0463.

Ethyl (*E*)-3-(1-((*2R*,*3R*,*4S*,*5R*)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ab)^[4]

3ab was obtained following the general procedure **A** from **1a**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3ab** was obtained as a white solid (24.0 mg, 70%). mp 198.2-200.0 °C; $[\alpha]_D^{25}$ -66.53 (c 0.473, MeOH); ¹H NMR (400 MHz, MeOD) δ 8.57 (s, 1H), 7.39 (d, *J* = 15.6 Hz, 1H), 6.88 (d, *J* = 15.6 Hz, 1H), 5.91 (d, *J* = 2.8 Hz, 1H), 4.23–4.16 (m, 4H), 4.08–4.02 (m, 1H), 3.93 (dd, *J* = 12.4, 2.4 Hz, 1H), 3.79 (dd, *J* = 12.4, 2.4 Hz, 1H), 1.29 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, MeOD) δ 169.2, 163.7, 151.3, 144.7, 138.4, 119.0, 110.4, 91.2, 86.2, 76.2, 70.6, 61.6, 61.5, 14.6. HRMS-ESI m/z calcd for C₁₄H₁₈N₂NaO₈ [M+Na]⁺ 365.0955; found 365.0956.

Tert-butyl(*E*)-3-(1-((*2R,3R,4S,5R*)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3ac)^[5]

3ac was obtained following the general procedure **A** from **1a**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3ac** was obtained as a white solid (27.4 mg, 74%). mp 165.3-167.3 °C; $[\alpha]_D^{25}$ -28.39 (c 0.830, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.65 (s, 1H), 8.46 (s, 1H), 7.21 (d, *J* = 15.6 Hz, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 5.76 (d, *J* = 4.4 Hz, 1H), 5.46 (d, *J* = 5.2 Hz, 1H), 5.31 (t, *J* = 5.0 Hz, 1H), 5.10 (d, *J* = 5.6 Hz, 1H), 4.08 (dd, *J* = 9.2, 4.8 Hz, 1H), 4.01 (dd, *J* = 10.2, 5.0 Hz, 1H), 3.89–3.84 (m, 1H), 3.76–3.69 (m, 1H), 3.63–3.55 (m, 1H), 1.44 (s, 9H). ¹³C NMR (101 MHz, DMSO) δ 166.1, 161.7, 149.5, 143.6, 136.8, 118.6, 108.3, 88.6, 84.7, 79.6, 73.8, 69.0, 60.2, 27.9(3C). HRMS-ESI m/z calcd for C₁₆H₂₂N₂NaO₈ [M+Na]⁺ 393.1268; found 393.1270.

Benzyl(E)-3-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-

(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5yl)acrylate (3ad)^[5]

3ad was obtained following the general procedure **A** from **1a**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3ad** was obtained as a white solid (27.0 mg, 67%). mp 179.6-183.7 °C; $[\alpha]_D^{25}$ -39.29 (c 0.330, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.69 (s, 1H), 8.51 (s, 1H), 7.42–7.30 (m, 6H), 6.89 (d, J = 16.0 Hz, 1H), 5.76 (d, J = 4.4 Hz, 1H), 5.45 (d, J = 5.2 Hz, 1H), 5.30 (t, J = 5.2 Hz, 1H), 5.18 (s, 2H), 5.07 (d, J = 5.6 Hz, 1H), 4.08 (dd, J = 9.6, 4.8 Hz, 1H), 4.01 (dd, J = 10.4, 5.2 Hz, 1H), 3.89–3.84 (m, 1H), 3.77–3.68 (m, 1H), 3.59 (ddd, J = 12.2, 4.8, 3.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 166.5, 161.7, 149.4, 144.1, 138.3, 136.3, 128.4, 128.0, 127.9, 116.2, 108.1, 88.6, 84.6, 73.8, 68.9, 65.3, 60.1. HRMS-ESI m/z calcd for C₁₉H₂₀N₂NaO₈ [M+Na]⁺ 427.1112; found 427.1118.

Methyl(*E*)-3-(1-((*2R*, *3R*, *4S*, *5R*)-3,4-dihydroxy-5-(hydroxy methyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)but-2-enoate (3ae)

3ae was obtained following the general procedure **A** from **1a**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3ae** was obtained as a white solid (18.1 mg, 53%). mp 163.9-168.6 °C; $[\alpha]_D^{25}$ -27.14 (c 0.280, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.54 (s, 1H), 8.33 (s, 1H), 6.77 (s, 1H), 5.80 (d, *J* = 4.0 Hz, 1H), 5.46 (s, 1H), 5.30 (s, 1H), 5.13 (s, 1H), 4.14–4.06 (m, 1H), 4.02 (t, *J* = 4.4 Hz, 1H), 3.92–3.86 (m, 1H), 3.73–3.55 (m, 5H), 2.32 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 166.9, 161.7, 149.6, 147.6, 140.6, 116.7, 113.2, 88.7, 84.7, 74.3, 69.5, 60.1, 50.9, 16.5. HRMS-ESI m/z calcd for C₁₄H₁₈N₂NaO₈ [M+Na]⁺ 365.0955; found 365.0961.

1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(1methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)pyrimidine-2,4(1H,3H)-dione (3af)^[6]

3af was obtained following the general procedure **A** from **1a** under O₂ at 90°C. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3af** was obtained as a yellow solid (15.5 mg, 44%). mp 273.9-276.5 °C; $[\alpha]_D^{25}$ -3.89 (c 0.300, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.89 (s, 1H), 8.92 (s, 1H), 7.13 (s, 1H), 5.86 (d, *J* = 4.4 Hz, 1H), 5.50 (d, *J* = 5.2 Hz, 1H), 5.21 (d, *J* = 5.2 Hz, 1H), 4.92 (t, *J* = 5.2 Hz, 1H), 4.07 (dd, *J* = 9.4, 4.6 Hz, 1H), 3.94–3.90 (m, 1H), 3.69–3.59 (m, 2H), 2.90 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 171.0, 170.9, 161.4, 149.2, 143.1, 135.7, 122.7, 103.6, 88.8, 85.2, 74.1, 70.3, 61.7, 23.6. HRMS-ESI m/z calcd for C₁₄H₁₅N₃NaO₈ [M+Na]⁺ 376.0751; found 376.0748.

1-((*2R*,*3R*,*4S*,*5R*)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((*E*)styryl) pyrimidine-2,4(1H,3H)-dione (3ag)^[7]

3ag was obtained following the general procedure **A** from **1a** under O_2 at 90°C. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3ag**

was obtained as a yellow solid (20.8 mg, 60%). mp 133.7-137.9 °C; $[\alpha]_D^{25}$ -50.11 (c 0.300, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.51 (s, 1H), 8.32 (s, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.40–7.328 (m, 3H), 7.23 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 16.4 Hz, 1H), 5.81 (d, J = 4.4 Hz, 1H), 5.46 (d, J = 4.4 Hz, 1H), 5.34 (t, J = 4.4 Hz, 1H), 5.12 (d, J = 4.0 Hz, 1H), 4.14–4.07 (m, 1H), 4.07–4.01 (m, 1H), 3.91–3.87 (m, 1H), 3.78–3.73 (m, 1H), 3.65–3.60 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ 162.3, 149.8, 138.1, 137.5, 128.8(2C), 127.8, 127.5, 126.1(2C), 120.9, 110.8, 88.4, 84.7, 74.0, 69.5, 60.5. HRMS-ESI m/z calcd for C₁₇H₁₈N₂NaO₆ [M+Na]⁺ 369.1057; found 369.1061.

1-((*2R*,*3R*,*4S*,*5R*)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((*E*)-4-(trifluoromethyl)styryl) pyrimidine-2,4(1H,3H)-dione (3ah)^[8]

3ah was obtained following the general procedure **A** from **1a** under O₂ at 90°C.. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3ah** was obtained as a beige solid (12.4 mg, 30%). mp 202.5-207.3 °C; $[\alpha]_D^{25}$ -52.27 (c 0.383, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.59 (s, 1H), 8.40 (s, 1H), 7.74–7.64 (m, 4H), 7.47 (d, *J* = 16.4 Hz, 1H), 7.04 (d, *J* = 16.4 Hz, 1H), 5.81 (d, *J* = 4.4 Hz, 1H), 5.48 (d, *J* = 5.2 Hz, 1H), 5.36 (t, *J* = 4.6 Hz, 1H), 5.12 (d, *J* = 5.2 Hz, 1H), 4.14–4.01 (m, 2H), 3.91–3.88 (m, 1H), 3.80–3.72 (m, 1H), 3.67–3.58 (m, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -60.8. ¹³C NMR (101 MHz, DMSO) δ 162.1, 149.7, 141.6, 139.3, 127.4, 127.0, 126.5, 125.8, 125.6 (q, *J*_{C-F} = 3.8 Hz), 124.4 (m, *J*_{C-F} = 270.0 Hz), 124.1, 110.2, 88.4, 84.6, 73.9, 69.3, 60.3. HRMS-ESI m/z calcd for C₁₈H₁₇F₃N₂NaO₆ [M+Na]⁺ 437.0931; found 437.0934.

1-((*2R*,*3R*,*4S*,*5R*)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((*E*)-2-(phenylsulfonyl)vinyl)pyrimidine-2,4(1H,3H)-dione (3ai)

3ai was obtained following the general procedure **A** from **1a**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3ai** was obtained as a white solid (20.5 mg, 50%). mp 234.0-235.8 °C; $[\alpha]_{D}^{25}$ -52.19 (c 0.350, MeOH); ¹H

NMR (400 MHz, MeOD) δ 8.64 (s, 1H), 7.89 (d, J = 7.2 Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.63-7.56 (m, 2H), 7.52 (d, J = 15.2 Hz, 1H), 7.35 (d, J = 14.8 Hz, 1H), 5.89 (d, J = 2.8 Hz, 1H), 4.22–4.17 (m, 1H), 4.07-4.02 (m, 1H), 3.95 (dd, J = 12.4, 2.4 Hz, 1H), 3.80 (dd, J = 12.4, 2.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 161.7, 149.7, 145.9, 141.0, 135.9, 133.5, 129.7, 127.0, 125.5, 106.5, 88.8, 84.6, 73.8, 68.8, 60.1. HRMS-ESI m/z calcd for C₁₇H₁₈N₂NaO₈S [M+Na]⁺ 433.0676; found 433.0682.

(*E*)-2-(1-((*2R*,*3R*,*4S*,*5R*)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)ethene-1-sulfonyl fluoride (3aj)

3aj was obtained following the general procedure **A** from **1a**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **3aj** was obtained as a yellow solid (9.2 mg, 26%). mp 162.5-166.3 °C; $[\alpha]_{D}^{25}$ -17.81 (c 0.640, MeOH); ¹H NMR (400 MHz, MeOD) δ 8.76 (s, 1H), 7.61 (dd, J = 15.0, 2.2 Hz, 1H), 7.51 (d, J = 14.8 Hz, 1H), 5.88 (d, J = 2.4 Hz, 1H), 4.22–4.17 (m, 2H), 4.07–4.03 (m, 1H), 3.95 (dd, J = 12.4, 2.4 Hz, 1H), 3.79 (dd, J = 12.4, 2.4 Hz, 1H). ¹⁹F NMR (377 MHz, MeOD) δ 60.4 (s). ¹³C NMR (101 MHz, MeOD) δ 163.1, 150.9, 148.9, 143.3, 117.8 (d, J = 27.4 Hz), 107.7, 91.6, 86.1, 76.3, 70.2, 61.3. HRMS-ESI m/z calcd for C₁₁H₁₃FN₂NaO₈S [M+Na]⁺ 375.0269; found 375.0265.

Ethyl (*E*)-3-(1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3bb)^[9]

3bb was obtained following the general procedure **A** from **1b**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3bb** was obtained as a white solid (23.4 mg, 72%). mp 167.5-169.4 °C; $[\alpha]_D^{25}$ +1.00 (c 0.400, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.65 (s, 1H), 8.41 (s, 1H), 7.35 (d, *J* = 16.0 Hz, 1H), 6.84 (d, *J* = 16.0 Hz, 1H), 6.13 (t, *J* = 6.4 Hz, 1H), 5.27 (d, *J* = 4.4 Hz, 1H), 5.18 (t, *J* = 5.2 Hz, 1H), 4.29–4.22 (m, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.79 (dd, *J* = 6.8, 3.6 Hz, 1H), 3.69–3.53 (m, 2H), 2.24–2.11 (m, 2H), 1.22 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, MeOD) δ 169.3, 163.7, 151.1, 144.7, 138.6, 118.9, 110.4, 89.2, 87.1, 71.7, 62.4, 61.5,

41.9, 14.6. HRMS-ESI m/z calcd for $C_{14}H_{18}N_2NaO_7$ [M+Na]⁺ 349.1006; found 349.1004.

Tert-butyl(*E*)-3-(1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3bc)^[10]

3bc was obtained following the general procedure **A** from **1b**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3bc** was obtained as a white solid (24.2 mg, 68%). mp 105.8-107.4 °C; $[\alpha]_D^{25}$ +0.40 (c 0.420, MeOH); ¹H NMR (400 MHz, MeOD) δ 8.44 (s, 1H), 7.28 (d, *J* = 16.0 Hz, 1H), 6.78 (d, *J* = 16.0 Hz, 1H), 6.26 (t, *J* = 6.4 Hz, 1H), 4.45–4.40 (m, 1H), 3.95 (dd, *J* = 6.4, 3.2 Hz, 1H), 3.86 (dd, *J* = 12.0, 2.4 Hz, 1H), 3.76 (dd, *J* = 12.4, 3.2 Hz, 1H), 2.38–2.23 (m, 2H), 1.49 (s, 9H). ¹³C NMR (101 MHz, MeOD) δ 168.7, 163.7, 151.1, 144.4, 137.5, 120.8, 110.5, 89.2, 87.0, 81.5, 71.7, 62.4, 41.9, 28.4. HRMS-ESI m/z calcd for C₁₆H₂₂N₂NaO₇ [M+Na]⁺ 377.1319; found 377.1322.

Benzyl(*E*)-3-(1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylate (3bd)

3bd was obtained following the general procedure **A** from **1b**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3bd** was obtained as a white solid (23.7 mg, 61%). mp 89.6-90.3 °C; $[\alpha]_D^{25}$ +1.11 (c 0.330, MeOH); ¹H NMR (400 MHz, MeOD) δ 8.49 (s, 1H), 7.44 (d, *J* = 15.6 Hz, 1H), 7.40–7.29 (m, 4H), 6.94 (d, *J* = 16.0 Hz, 1H), 6.25 (t, *J* = 6.4 Hz, 1H), 5.20 (s, 2H), 4.42 (dt, *J* = 6.1, 4.0 Hz, 1H), 3.95 (q, *J* = 3.3 Hz, 1H), 3.85 (dd, *J* = 12.2, 3.0 Hz, 1H), 3.75 (dd, *J* = 12.2, 3.4 Hz, 1H), 2.38–2.22 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ 169.0, 163.7, 151.1, 144.9, 139.0, 137.7, 129.5(2C), 129.2(2C), 118.5, 110.4, 89.2, 87.1, 71.7, 67.2, 62.4, 41.9. HRMS-ESI m/z calcd for C₁₉H₂₀N₂NaO₇ [M+Na]⁺ 411.1163; found 411.1171.

Methyl (*E*)-3-(1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)but-2-enoate (3be)

3be was obtained following the general procedure **A** from **1b**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3be** was obtained as a white solid (13.4 mg, 41%). mp 175.4-176.7 °C; $[\alpha]_D^{25}$ +6.67 (c 0.270, MeOH); ¹H NMR (400 MHz, MeOD) δ 8.35 (s, 1H), 6.66 (s, 1H), 6.31 (t, *J* = 6.6 Hz, 1H), 4.46–4.40 (m, 1H), 3.96 (q, *J* = 2.9 Hz, 1H), 3.83 (dd, *J* = 12.0, 2.8 Hz, 1H), 3.75 (dd, *J* = 12.0, 2.8 Hz, 1H), 3.69 (s, 3H), 2.40 (s, 3H), 2.34–2.25 (m, 2H). ¹³C NMR (126 MHz, MeOD) δ 169.1, 163.7, 151.4, 149.3, 141.4, 118.9, 116.1, 89.2, 87.0, 72.1, 62.5, 51.5, 41.9, 17.4. HRMS-ESI m/z calcd for C₁₄H₁₈N₂NaO₇ [M+Na]⁺ 349.1006; found 349.1009.

1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)pyrimidine-2,4(1H,3H)-dione (3bf)^[6]

3bf was obtained following the general procedure **A** from **1b** under O₂ at 90°C. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3bf** was obtained as a yellow solid (12.5 mg, 37%). mp >300 °C; $[\alpha]_D^{25}$ -20.42 (c 0.360, DMSO); ¹H NMR (400 MHz, DMSO) δ 11.84 (s, 1H), 8.99 (s, 1H), 7.12 (s, 1H), 6.15 (t, *J* = 6.4 Hz, 1H), 5.37 (d, *J* = 4.0 Hz, 1H), 4.92 (t, *J* = 5.2 Hz, 1H), 4.27-4.21 (m, 1H), 3.91-3.85 (m, 1H), 3.65–3.51 (m, 2H), 2.89 (s, 3H), 2.24-2.21 (m, 1H), 2.17–2.07 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ 171.1, 171.0, 161.6, 149.0, 143.1, 135.9, 122.2, 103.2, 88.1, 85.7, 70.7, 61.7, 23.6. HRMS-ESI m/z calcd for C₁₄H₁₅N₃NaO₇ [M+Na]⁺ 360.0802; found 360.0804.

1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((*E*)styryl)pyrimidine-2,4(1H,3H)-dione (3bg)^[11]

3bg was obtained following the general procedure A from 1b under O2 at 90°C. After

purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3bg** was obtained as a faint yellow solid (17.2 mg, 52%). mp 99.8-101.4 °C; $[\alpha]_D^{25}$ -3.49 (c 0.430, MeOH); ¹H NMR (400 MHz, MeOD) δ 8.32 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 16.4 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.89 (d, *J* = 16.4 Hz, 1H), 6.32 (t, *J* = 6.6 Hz, 1H), 4.46 (dd, *J* = 9.2, 4.0 Hz, 1H), 3.96 (dd, *J* = 6.2, 3.0 Hz, 1H), 3.88 (dd, *J* = 12.2, 2.6 Hz, 1H), 3.79 (dd, *J* = 12.0, 3.2 Hz, 1H), 2.38–2.25 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ 164.5, 151.4, 139.1, 138.8, 130.3, 129.6(2C), 128.5, 127.3(2C), 121.0, 113.3, 89.0, 86.7, 71.9, 62.6, 41.7. HRMS-ESI m/z calcd for C₁₇H₁₈N₂NaO₅ [M+Na]⁺ 353.1108; found 353.1112.

1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((*E*)-2-(phenylsulfonyl)vinyl)pyrimidine-2,4(1H,3H)-dione (3bi)

3bi was obtained following the general procedure **A** from **1b**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3bi** was obtained as a yellow solid (15.4 mg, 39%). mp >300 °C; $[\alpha]_{D}^{25}$ +0.71 (c 0.380, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.73 (s, 1H), 8.48 (s, 1H), 7.91–7.82 (m, 2H), 7.75–7.68 (m, 1H), 7.68–7.61 (m, 2H), 7.46 (d, *J* = 15.2 Hz, 1H), 7.39 (d, *J* = 14.8 Hz, 1H), 6.10 (t, *J* = 6.4 Hz, 1H), 5.29 (d, *J* = 4.4 Hz, 1H), 5.19 (t, *J* = 5.2 Hz, 1H), 4.29–4.21 (m, 1H), 3.80 (q, *J* = 3.7 Hz, 1H), 3.71–3.52 (m, 2H), 2.21–2.13 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ 163.4, 150.9, 146.9, 142.6, 136.9, 134.5, 130.5(2C), 128.4(2C), 127.8, 108.6, 89.2, 87.2, 71.5, 62.3, 41.9. HRMS-ESI m/z calcd for C₁₇H₁₈N₂NaO₇S [M+Na]⁺ 417.0727; found 417.0727.

(*E*)-2-(1-((*2R*,*4S*,*5R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)ethene-1-sulfonyl fluoride (3bj)

3bj was obtained following the general procedure **A** from **1b**. After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (12/1) as the eluent, **3bj** was obtained as a white solid (8.1 mg, 24%). mp 193.3-194.2 °C; $[\alpha]_D^{25}$ +5.68 (c 0.370, MeOH); ¹H

NMR (400 MHz, MeOD) δ 8.66 (s, 1H), 7.62 (dd, J = 14.8, 2.4 Hz, 1H), 7.55 (dd, J = 15.2, 0.8 Hz, 1H), 6.22 (t, J = 6.2 Hz, 1H), 4.41 (dt, J = 6.4, 4.0 Hz, 1H), 3.96 (dd, J = 6.8, 3.2 Hz, 1H), 3.87 (dd, J = 12.0, 2.8 Hz, 1H), 3.76 (dd, J = 12.2, 3.4 Hz, 1H), 2.42-2.34 (m, 1H), 2.30–2.20 (m, 1H). ¹⁹F NMR (377 MHz, MeOD) δ 60.4 (s). ¹³C NMR (101 MHz, MeOD) δ 163.1, 150.7, 149.0, 143.4, 117.7 (d, J = 27.6 Hz), 107.6, 89.3, 87.6, 71.4, 62.2, 42.1. HRMS-ESI m/z calcd for C₁₁H₁₃FN₂NaO₇S [M+Na]⁺ 359.0320; found 359.0315.

3.1 Applications of the methodology

a) Gram scale preparation of 3aa

General procedure B (gram scale): A 250 mL reaction tube was charged with substrate **1a** (1.2 g, 5 mmol, 1.0 equiv.), Pd(OAc)₂ (0.5 mmol, 10 mol%), CH₃CO₃^{*i*}Bu (10 mmol, 2.0 equiv.) (50% solution in aromatic free mineral spirit), PivOH (12.5 mmol, 2.5 equiv.) and **2a** (10 mmol, 2.0 equiv.), then 20 mL CH₃CN were added to dissolved the mixture. The reaction solution was bubbled with O₂ for 30 min. The tube was sealed with a Teflon-lined cap and the reaction mixture was then placed to a pre-heated oil bath to stir at 90 °C for 15 h (*Caution: The tube was carefully capped and covered with safety shield.*). The reaction mixture was then cooled to room temperature. It was filtered through a pad of celite, and then washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using CH₂Cl₂/MeOH (50/1 to 25/1) as the eluent to give the pure product **3aa**.

b) On-water reaction ^a

F 4	CH ₃ CN:H ₂ O -	Yield ^b of 3		Recovery ^b of 1		
Entry		3 aa	3ba	1 a	1b	
	1	10:1	61%	61%	32%	23%
	2	7:1	48% ^c	52%	48%	35%
	3	5:1	39%	38%	60%	55%
	4	3:1	23%	26%	58%	65%
	5	1:1	5%	9%	95%	90%
	6	1:3	2%	2%	98%	98%
	7	H ₂ O	2%	2%	98%	94%
	8	CH ₃ CN	79%	73%	13%	8%

^a Conditions: uridine **1a** or **1b** (0.1 mmol), methyl acrylate **2a** (0.2 mmol), Pd(OAc)₂ (0.01 mmol), MeCO₃'Bu (0.2 mmol), PivOH (0.2 mmol), CH₃CN : H₂O (v/v, 0.4 mL) under air at 70 °C for 12 hours. ^b Yields and recovery were determined by LC-MS. ^c Isolated yield.

General procedure C (0.1 mmol scale): A 10 mL reaction tube was charged with substrate 1a (0.1mmol, 1.0 equiv.), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 10 mol%), $CH_3CO_3{}^tBu$ (64 µL, 0.2 mmol, 2.0 equiv.) (50% solution in aromatic free mineral spirit), PivOH (20.4 mg, 0.2 mmol, 2.0 equiv.) and 2a (18µL, 0.2 mmol, 2.0 equiv.), then 0.35 mL CH₃CN and 0.05 mL H₂O were added to dissolve the above mixture. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath to stir at 70 °C for 12 h. The reaction mixture was then cooled to room temperature. It was filtered through a pad of celite and washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (preparative TLC) (CH₂Cl₂:MeOH = 10:1) to give the pure product 3aa.

c) Derivative of 3aj [12, 13]

A 10 mL sample vial was charged with **3aj** (35 mg, 0.10 mmol, 1.0 equiv.), *p*-methoxyphenol (13.6 mg, 0.11 mmol, 1.1 equiv.) and Cs_2CO_3 (65.2 mg, 0.20 mmol, 2.0 equiv.), and then CH₃CN (0.5 mL) was added to dissolve the above mixture. The reaction was stirred at ambient temperature for 1 h. Then it was filtered through a pad of celite and washed with methanol. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (preparative TLC) (CH₂Cl₂:MeOH = 10:1) to give the pure product **5a** as a white solid (26.8 mg, 56% yield).

4-methoxyphenyl(E)-2-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl))tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)ethene-1-sulfonate (5a)<math>(5a)

After purification by PTLC (preparative TLC) using CH₂Cl₂/MeOH (10/1) as the eluent, **5a** was obtained as a white solid (26.8 mg, 56%). mp 180.5-184.6 °C; $[\alpha]_D^{25}$ -17.36 (c 0.457, MeOH); ¹H NMR (400 MHz, DMSO) δ 11.84 (s, 1H), 8.54 (s, 1H), 7.46 (d, *J* = 15.2 Hz, 1H), 7.26 – 7.12 (m, 3H), 6.97 (d, *J* = 8.8 Hz, 2H), 5.73 (d, *J* = 4.0 Hz, 1H), 5.49 (d, *J* = 5.2 Hz, 1H), 5.27 (t, *J* = 5.2 Hz, 1H), 5.11 (d, *J* = 5.6 Hz, 1H), 4.06 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.98 (dd, *J* = 10.4, 5.2 Hz, 1H), 3.89–3.82 (m, 1H), 3.75 (s, 3H), 3.72–3.65 (m, 1H), 3.61–3.53 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ 161.6, 157.9, 149.3, 146.6, 142.5, 139.5, 123.5, 118.4, 114.9, 106.1, 88.9, 84.6, 73.8, 68.8, 60.1, 55.5. HRMS-ESI m/z calcd for C₁₈H₂₀N₂NaO₁₀S [M+Na]⁺ 479.0731; found 479.0740.

4. References

[1] D. Y. Piao, A. Basavapathruni, P. Iyidogan, G. X. Dai, W. Hinz, A. S. Ray, E. Murakami, J. Y. Feng, F. You, G. E. Dutschman, D. J. Austin, K. A. Parker and K. S. Anderson, *Bioorg. Med. Chem. Lett.*, 2013, **23**, 1511-1518.

[2] S. Bhilare, V. Gayakhe, A. V. Ardhapure, Y. S. Sanghvi, C. Schulzke, Y. Borozdina and A. R. Kapdi, *RSC. Adv.*, 2016, **6**, 83820-83830.

[3] Y. L. Ding, J. L. Girardet, Z. Hong, S. Z. Shaw and N. H. Yao, *Heterocycle.*, 2006, 68, 521-530.

[4] R. Kumar, L. H. Xu, E. E. Knaus, L. I. Wiebe, D. R. Tovell, D. L. Tyrrell and T. M. Allen, *J. Med. Chem.*, 1990, **33**, 717-723.

[5] R. F. Whale, P. L. Coe and R. T. Walker, *Nucleosides & Nucleotides.*, 1991, **10**, 1615-1624.

[6] T. Itahara, Chem. Lett., 1986, 15, 239-242.

[7] S. Izuta and M. Saneyoshi, Chem. Pharm. Bull., 1987, 12, 4829-4838.

[8] M. Segal and B. Fischer, Org. Biomol. Chem., 2012, 10, 1571-1580.

[9] W. E. Herve and C. Len, RSC Adv., 2014, 4, 46926-49929.

[10] V. Aucagne, S. B. Raboin, P. Guenot and L. A. Agrofoglio, *J. Comb. Chem.*, 2004, 6, 717-723.

[11] V. Gayakhe, A. Ardhapure, A. R. Kapdi, Y. S. Sanghvi, J. L. Serrano, L. García, J. Peréz, J. García, G. Sánchez, C. Fischer and C. Schulzke, *J. Org. Chem.*, 2016, 81, 2713-2729.

[12] T. S. B. Lou, S. W. Bagley and M. C. Willis, *Angew. Chem. Int. Ed.*, 2019, **58**, 18859-18863.

[13] X. Y. Chen, Y. C. Wu, J. Zhou, P. Wang and J. Q. Yu, *Org. Lett.*, 2019, **21**, 1426-1429.

5. NMR Spectra

-0.651

36

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

12.5 11.5 10.5

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 0 -10 fl (ppm) 90 20 80 70 40 30 -20 -30 -40 -50 -60 -70 -80 60 50 -90

