Supplementary Information

Exploration of active sites of ethyl alcohol electro-oxidation on

porous gold nanoparticles with enhanced Raman spectroscopy

Yusong Wang^a, Peng Xu^b, Wenjie Xie^a, Shaozhen Wang^a, Yunyan Chen^a, Nan Yu^b and Shengpeng Zhang^{*a}

^aAnhui Provincial Engineering Research Center for Polysaccharide Drugs and Institute

of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan

Medical College, Wuhu 241002, P.R. China.

^bLaboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key

Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui

Normal University, Wuhu 241002, P. R. China.

*Corresponding author. E-mail: <u>zhangshengpeng@wnmc.edu.cn</u>

Materials and Characterizations

HAuCl₄•3H₂O (\geq 98%), 0.05 µm alumina polishing powder, Nafion (5%), potassium ferricyanide, potassium chloride was purchased from Aladdin (Shanghai, China). Urea and ethanol were purchased from Shantou Xilong and Tianjin Fuchen. All aqueous solutions were prepared by deionized water (18.25 $M\Omega \cdot cm$). Transmission electron microscope (TEM) images were captured using a transmission electron microscope (S-4800, Japan). The Q-switched YAG laser (Indi-10) from American Spectral Physics Corporation was used for laser irradiation. The laser beam was focused using a neutral density filter and a quartz converging lens with a focal length of 100mm. An imaging lens with a focal length of 70 mm and an optical fiber probe were used to collect the laser signal. The two-dimensional electric translation table was used to move the experimental samples at a precise speed to ensure the sampling quantity and randomness. Sampling and analysis were performed using grating spectrometer, ICCD and computer. Raman spectroscopy of anhydrous ethanol was detected by self-assembled Raman spectrometer and electrochemical detection of porous Au nanospheres was carried out by electrochemical workstation (CHI660E, Shanghai Chenhua Instrument). Renishaw inVia with a laser wavelength of 532nm was used for electrochemical enhanced Raman instrument test various substances in the preparation process are dispersed by ultrasonic cleaner.

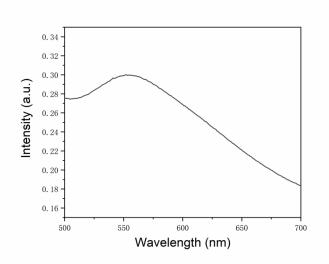


Figure S1 : Ultraviolet absorption spectra of porous gold nanospheres

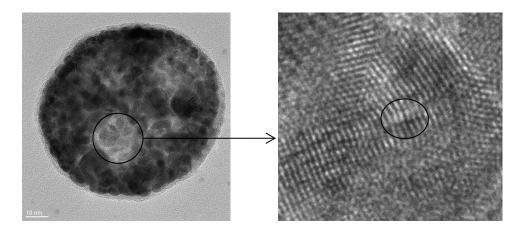


Figure S2 : TEM image of porous gold nanospheres