Supplemental Material

Simultaneous detection of acetaminophen, catechol and hydroquinone using

graphene-assisted electrochemical sensor

Guofang Wang^{1#}, Siyi Zhang^{1#}, Qinyu Wu^{1#}, Jingzhi Zhu¹, Suhua Chen³, Yuanyuan

Lei¹, Yanmei Li¹, Haomin Yi¹, Liyin Chen³, Zi-Qi Shi^{2*}, Yi Xiao^{1,4*},

- 1. Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
- 2. Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
- 3. Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
- 4. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

[#] These authors contributed equally to this work.

*Corresponding authors. Email address: <u>njcpuxy4936@163.com</u>; <u>shiziqi47@126.com</u>.

Table of Content

Table S1. Analytical results for separate determination of phenols

Table S2. Analytical results for simultaneous determination of phenols

Table S3. Recovery results for phenolic compounds at ITO/APTES/r-GO@Au electrode

Table S4. Drug content determined by HPLC method and EC method

Table S5 Comparison of analytical performance of phenolic compounds

Figure S1. Comparison of HPLC and EC method

Figure S2. Raman spectra of different electrodes

Table S1 Analytical results for Phenols of ITO/APTES /r-GO@Au electrode

Phenols	Fitting equation	Dynamic range (µM)	LOD (µM)	LOQ (µM)	R ²
Acetaminophen	<i>Y</i> =713.59+49.57 <i>X</i>	1-500	0.82	2.73	0.9844
Catechol	<i>Y</i> =-1163.62+59.21 <i>X</i>	5-500	1.41	4.71	0.996
Hydroquinone	<i>Y</i> =2023.84+67.05 <i>X</i>	8-700	1.95	6.51	0.9912

Table S1 Analytical results for separate determination of phenols

Table S2. Analytical results for simultaneous determination of phenols

	•			-	
Phenols	Fitting equation	Dynamic range (µM)	$LOD (\mu M)$	LOQ (µM)	R ²
acetaminophen	<i>Y</i> =68.22 <i>X</i> +2325.89	1-180	0.12	0.43	0.997
catechol	<i>Y</i> =75.50 <i>X</i> +2535.50	5-140	0.13	0.42	0.9949
hydroquinone	<i>Y</i> =59.04 <i>X</i> +5721.67	8-200	0.11	0.36	0.9948

Table S2 Analytical results for simultaneous determination of phenols

Table S3 Recovery results for phenolic compounds at ITO/APTES /r-GO@Au electrode

electrode						
Phenols	Added (µM)	Found (µM)	Recovery (%)	RSD (%)		
Catechol	60	63.86	106.43	0.63		
Acetaminophen	65	68.86	105.94	0.10		
Hydroquinone	88	95.54	108.57	0.31		

Table S3 Recovery results for phenolic compounds at ITO/APTES /r-GO@Au

Table S4 Drug content determined by HPLC and EC

	HPLC				EC		
Samples	Real concentration (µM)	Detected concentrati on (µM)	Content	Real concentrat ion (µM)	Detected concentration (µM)	Content	
Acetaminoph en	231.82	200.33	86.42%	107.58	85.62	79.59%	

Table S4 Drug content determined by HPLC and EC

Table S5 Comparison of analytical performance of phenolic compounds

Mathada	Dynamic range	LOD	Dof
Methods	(µM)	(µM)	Kel
This work	1-500	0.82	
A flow injection chemiluminescence	5 50	1.0	
method	5 - 50	1.8	1
A MIP electrochemical sensor	10 - 8000	1	2
This work	5-500	1.41	
An expanded graphite electrode			
modified with intercalated	10-1000	1.13	3
montmorillonite			
Electrodeposited molecularly			
imprinted chitosan film on BDD	0-80	0.69	4
electrodes		 1.41 1.13 0.69 1.95 0.66 	
This work	8-700	1.95	
MOF-rGO modified carbon paste	4 1000	0.66	~
electrode	4-1000	0.66	5
A nanometer cobalt/l-glutamate-	2.05.1200	0.407	<i>r</i>
modified electrode	3.85-1300	0.497	6
	MethodsThis workA flow injection chemiluminescencemethodA MIP electrochemical sensorThis workAn expanded graphite electrodemodified with intercalatedmontmorilloniteElectrodeposited molecularlyimprinted chitosan film on BDDelectrodesThis workMOF-rGO modified carbon pasteelectrodeananometer cobalt/l-glutamate-modified electrode	Methods Dynamic range (μM) This work 1-500 A flow injection chemiluminescence method 3 A flow injection chemiluminescence 5-50 method 10 - 8000 A MIP electrochemical sensor 10 - 8000 This work 5-500 An expanded graphite electrode 4000 modified with intercalated 10-1000 montmorillonite 4000 Electrodeposited molecularly 4000 imprinted chitosan film on BDD 0-80 electrodes 4-1000 MOF-rGO modified carbon paste 4-1000 A nanometer cobalt/1-glutamate- 3.85-1300 modified electrode 3.85-1300	MethodsDynamic range (μM) LOD (μM) This work1-5000.82A flow injection chemiluminescence method $5 - 50$ 1.8Methods $5 - 50$ 1.8A MIP electrochemical sensor10 - 80001This work5-5001.41An expanded graphite electrode modified with intercalated10-10001.13Mornmorillonite10-10001.13Electrodeposited molecularly imprinted chitosan film on BDD0-800.69electrodes1.95MOF-rGO modified carbon paste electrode4-10000.66A nanometer cobalt/1-glutamate-

Table S5 Comparison of analytical performance of phenolic compounds

Fig. S1. Comparison of HPLC and EC method. A. Plot of various concentrations of AP *vs* peak area (HPLC). B. Plot of various concentrations of AP *vs* square of current (EC).

Figure S2 Raman spectra of different electrodes

Fig. S2. Raman spectra of electrodes. Raman spectra of ITO glass, ITO/r-GO glass, ITO/r-GO@Au glass, ITO/APTES /r-GO glass and ITO/APTES / r-GO@Au glass electrodes.

References

- 1. B. Hossein, African Journal of Pharmacy and Pharmacology, 2012, 6.
- 2. X. Wang, J. Luo, C. Yi and X. Liu, *Electroanalysis*, 2013, **25**, 1907-1916.
- 3. Y. Kong, Y. Xu, H. Mao, C. Yao and X. Ding, Journal of Electroanalytical Chemistry, 2012, 669, 1-5.
- C. Salvo-Comino, I. Rassas, S. Minot, F. Bessueille, M. L. Rodriguez-Mendez, A. Errachid and N. Jaffrezic-Renault, *Mater Sci Eng C Mater Biol Appl*, 2020, 110, 110667.
- H. Wang, Q. Hu, Y. Meng, Z. Jin, Z. Fang, Q. Fu, W. Gao, L. Xu, Y. Song and F. Lu, *J Hazard Mater*, 2018, 353, 151-157.
- 6. B. Huang, C. Yao, J. Yang, S. Du and X. Lu, *RSC Adv*, 2020, **10**, 43834-43839.