Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Exploring the adsorption ability with sensitivity and reactivity of C₁₂-B₆N₆, C₁₂-Al₆N₆ and B₆N₆-Al₆N₆ heteronanocages towards the cisplatin drug: A DFT, AIM and COSMO analysis

Md. Golam Muktadir, Ariful Alam, Afiya Akter Piya and Siraj Ud Daula Shamim

Department of Physics, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.

Corresponding Author: Siraj Ud Daula Shamim (sdshamim@mbstu.ac.bd)

Fig. SI1: (a) Optimized structure, (b) ESP, (c) HOMO and (d) LUMO maps of CP drug molecule.

Fig. SI2: HOMO maps (a-c) and LUMO maps (d-f) of CP/C_{24} , $CP/B_{12}N_{12}$ and $CP/Al_{12}N_{12}$ complexes for S₃, S₂ and S₃ states respectively.

Fig. SI3: EDM (top row) and ESP (bottom row) maps of (a) CP/C_{24} , (b) $CP/B_{12}N_{12}$ and (c) $CP/Al_{12}N_{12}$ for S₃, S₂ and S₃ states respectively.

(a)

(b)

Fig. SI4: HOMO maps (a-c) and LUMO maps (d-f) of CP/C_{12} -B₆N₆, CP/C_{12} -Al₆N₆ and CP/B_6N_6 - Al_6N_6 complexes of our most stable states (S₃, S₂ and S₂) respectively.

(b)

(a)

(c)

Fig. SI5: ESP (top row) and EDM (bottom row) maps of (a & d) CP/C_{12} -B₆N₆, (b & e) CP/C_{12} -Al₆N₆ and (c & f) CP/B_6N_6 -Al₆N₆ for S₃, S₂ and S₂ states respectively.

Table SI1:

Structure	State	Gas Phase			Water Phase		
		$E_{F}(eV)$	φ(eV)	%φ	$E_{F}\left(eV\right)$	φ (eV)	%φ
СР		-3.65	3.65		-3.92	3.92	
C ₂₄		-5.12	5.12		-5.08	5.08	
CP/C_{24}	S 1	-4.57	4.57	-10.5	-4.62	4.62	-8.8
CP/C_{24}	S2	-4.87	4.87	-4.8	-4.98	4.98	-1.9
CP/C_{24}	S3	-4.61	4.61	-9.8	-4.64	4.64	-8.6
CP/C_{24}	S4	-5.24	5.24	2.4	-5.10	5.10	0.4
$B_{12}N_{12}$		-4.62	4.62		-4.59	4.59	
CP/B ₁₂ N ₁₂	S 1	-4.47	4.47	-3.2	-4.28	4.28	-6.6
$CP/B_{12}N_{12}$	S2	-4.65	4.65	0.5	-4.63	4.63	0.9
CP/B ₁₂ N ₁₂	S3	-4.46	4.46	-3.4	-4.29	4.29	-6.4
CP/B ₁₂ N ₁₂	S4	-4.37	4.37	-5.4	-4.32	4.32	-5.7
$Al_{12}N_{12}$		-4.27	4.27		-4.45	4.45	
$CP/Al_{12}N_{12}$	S 1	-4.20	4.20	-1.4	-4.32	4.32	-2.8
CP/Al ₁₂ N ₁₂	S2	-4.03	4.03	-5.4	-4.19	4.19	-5.8
$CP/Al_{12}N_{12}$	S3	-4.21	4.21	-1.3	-4.33	4.33	-2.6
$CP/Al_{12}N_{12}$	S4	-4.05	4.05	-4.9	-4.17	4.17	-6.3

Fermi level energies (E_F), work function (φ) and change in work function (% φ) for CP/C₂₄, CP/B₁₂N₁₂ and CP/Al₁₂N₁₂ complexes in both gas and water phases.

Table SI2:

Fermi level energies (E_F), work function (ϕ) and change in work function (% ϕ) for CP/C₁₂-B₆N₆, CP/C₁₂-Al₆N₆ and CP/B₆N₆-Al₆N₆ complexes in both gas and water phases.

Structure	State	Gas Phase			Water Phase		
		$E_{F}(eV)$	φ (eV)	%φ	E _F (eV)	φ (eV)	%φ
СР		-3.65	3.65		-3.92	3.92	

C_{12} - B_6N_6		-4.79	4.79		-4.77	4.7	
CP/ C12-B6N6	S 1	-4.36	4.36	-9.06	-4.34	4.34	-9.05
CP/ C12-B6N6	S2	-4.44	4.44	1.97	-4.48	4.48	3.31
CP/ C12-B6N6	S3	-4.18	4.18	-5.97	-4.25	4.25	-5.19
C_{12} - Al_6N_6		-3.98	3.98		-4.17	4.17	
CP/ C ₁₂ -Al ₆ N ₆	S 1	-3.94	3.94	-0.95	-4.02	4.02	-3.56
CP/ C ₁₂ -Al ₆ N ₆	S2	-3.84	3.84	-2.63	-3.99	3.99	-0.86
CP/ C ₁₂ -Al ₆ N ₆	S3	-3.84	3.84	0.13	-4.19	4.19	5.13
B_6N_6 - Al_6N_6		-4.51	4.51		-4.72	4.72	
CP/B6N6-Al6N6	S 1	-4.55	4.55	0.99	-4.58	4.58	-3.00
CP/B ₆ N ₆ -Al ₆ N ₆	S2	-4.23	4.23	-7.04	-4.20	4.20	-8.27
CP/B ₆ N ₆ -Al ₆ N ₆	S3	-4.54	4.54	7.20	-4.59	4.59	9.47