Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting information

Alireza Jalouli^a, and Shenqiang Ren^{a,b,c}

- a. Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, United States
- b. Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, 14260, United States
- c. Research and Education in Energy Environment & Water Institute, University at Buffalo, The State University of New York, Buffalo, New York, 14260, United States

Sample preparation

To prepare PB powder crystals, the power of potassium hexacyanochromate (III) and vanadium (II) chloride are mixed with 3:2 weight ratio in water and is left in a centrifuge tube for one day to react completely. The product is washed for a few times and then centrifuged to remove the unreacted agents. The achieved substance with a dark blue color is dried for one day in a vacuum chamber at room temperature. The product is a dark blue powder of PB nanocrystals. Since the PB power is sensitive to oxidation, it is needed to kept in the glove box. To synthesis ImClO₄, equal molar amounts of imidazolium ($C_3N_2H_4$) with perchloric acid (HClO₄) are mixed. The solvent is dried slowly in several days to achieve a white transparent powder crystal. Different ratios of the synthesized crystals (PB and ImClO₄) were ground together and then pressed to have round palettes with 6mm diameter and about 1 mm thickness. To contact a thin copper wire to the top and bottom of the composite palette sample, silver epoxy was used. (Figure.S1(a)).

S1. (a) SEM/EDS mapping of the composite with Cl which is the representative of the. (b) The process of ImClO₄:PBA preparation.

Hysteresis measurement

The hysteresis measurements for three different ratios shows a weaker splitting for 2:1 (Fig. SI2(a)). To applied elect field to the two areas of the nanocomposite samples, two thin copper wire were attached to the areas by silver paste. Since $ImClO_4$ is an energetic material, during the experiment at room temperature, the dry nitrogen flow was provided to avoid over heating of the nanocomposite as a result of the applied high voltage. The current during the experiment was as low as 0.004 mA.

SI2. (a) hysteresis loop at room temperature for 2:1 at E=0, 3, 15, 18, and 21. (b) the hysteresis loop for 1:2

FMR measurement

FMR measurement in the absence of electric bias for 2:1 shows a similar trendline to 1:1 one. The FMR and integrated FMR signal at 4GHz (Fig. SI3(a), (b)) show the same magnitude of the shift (~5 Oe).

