Supporting Information

Catalytic conversion of heavy naphtha to reformate product over phosphorus-ZSM-5 catalyst at lower reforming temperature

Emad N. Al-Shafei^{1*}, Mohammed Z. Albahar^{1*}, Mohammad F, AlJishi¹, Aaron Akah¹, Ali N. Jishi¹, Ahmed Alasseel¹,

¹ Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia.

*Corresponding authors: EMAD.SHAFEI@ARAMCO.COM, emadnaji@gmail.com

Contents

		Page
Table 1S.	Nitrogen adsorption analysis and NH_3 -TPD profiles of modified ZSM-5 and after reaction	3
Table 2S.	Metal analysis of zeolite catalysts	5
Figure 1S.	Schematic diagram of dodecane cracking and reforming via phosphate modified ZSM-5 zeolite catalyst	2
Figure 2S.	XRD patterns of hydrothermally treated with steam ZSM-5 zeolite catalysts with binder and after reaction	3
Figure 3S.	[A] N ₂ adsorption-desorption isotherms [B] pore size distribution curves of parent and modified ZSM-5 zeolite with binder before and after reaction (coke)	4
Figure 4S.	[A] Py-FTIR of 40% ZSM-5 in 60% binder, [B] Py-FTIR of 40% ZSM-5 in 60% binder (HT)	4
Figure 5S.	SEM images [A] 40% ZSM-5 in 60% binder, [B] 40% ZSM-5 in 60% binder after steam treatment	5
Figure 6S	Gas-chromatograph of n-dodecane conversion over 40% ZSM-5 in 60% binder after steam treatment	6

3. Results and Discussion

Figure 1S. Schematic diagram of dodecane cracking and reforming via phosphate modified ZSM-5 zeolite catalyst

Figure 1S shows the schematic diagram of dodecane reforming though the carbenium ions via phosphate modified ZSM-5 zeolite catalyst pores and it favored monomolecular reaction through β -scission of dodecane and made high paraffin and olefin (~58%). While bimolecular was also associated with the reaction and promoted the iso-paraffins product via isomerization reaction [1]–[3]. While the parent ZSM-5 (P) showed the pores selectivity favored to the cyclization reaction and produce aromatics and naphthenes products through bimolecular reaction pathway more than the monomolecular reaction pathway [4], [5].

Figure 2S. XRD patterns of hydrothermally treated with steam ZSM-5 zeolite catalysts with binder And after reaction

Table 1S. Nitrogen adsor	ption analysis a	nd NH ₃ –TPD 1	profiles of p	parent and m	nodified ZSM-5
6		2			

Zeolite ID	BET surface area [m²g ⁻¹]	t-Plot* micropore surface area, [m²/g ⁻¹]	t-Plot* external surface area, [m²/g ⁻¹]	Pore Volume, [cm³/g ⁻¹]
40% ZSM-5, 60% binder	164	103	61	0.16
40% ZSM-5, 60% binder HT**	170	106	64	0.15
40% ZSM-5, 60% binder after reaction	137	76	61	0.14

* Surface area by t-plot derived from Harkins and Jura equation, **HT: hydrotreatment treatment by steam

Figure 3S. [A] N₂ adsorption-desorption isotherms [B] pore size distribution curves of parent and modified ZSM-5 zeolite with binder before and after reaction (coke)

Figure 4S. (A) Py-FTIR of 40% ZSM-5 in 60% binder, (B) Py-FTIR Py-FTIR of 40% ZSM-5 in 60% binder (HT) (¹BAS: Brønsted acid sites, ²LAS: Lewis acid sites)

Sample ID	0	Al	Si	Р
40% ZSM-5, 60% binder	48	16.3	33.6	2.1
40% ZSM-5, 60% binder – HT*	61.6	12.4	24.6	1.4

Table S2. Metal analysis of zeolite catalysts

*HT: hydrothermal treatment by steam, ND: not detected

Figure 5S. SEM images [A] 40% ZSM-5 in 60% binder, [B] 40% ZSM-5 in 60% binder after steam treatment

Figure 6S. Gas-chromatograph of n-dodecane conversion over 40% ZSM-5 in 60% binder after steam treatment

References

- [1] M. Alabdullah *et al.*, "One-step conversion of crude oil to light olefins using a multi-zone reactor," *Nature Catalysis*, vol. 4, no. 3, pp. 233–241, 2021.
- [2] M. Alabdullah *et al.*, "Composition-performance Relationships in Catalysts Formulation for the Direct Conversion of Crude Oil to Chemicals," *ChemCatChem*, vol. 13, no. 7, pp. 1806–1813, 2021.
- [3] J. Jiang, J. Yu, and A. Corma, "Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures," *Angewandte Chemie International Edition*, vol. 49, no. 18, pp. 3120– 3145, 2010.
- [4] H. Krannila, W. O. Haag, and B. C. Gates, "Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5," *Journal of Catalysis*, vol. 135, no. 1, pp. 115–124, 1992.
- [5] E. N. Al-Shafei *et al.*, "Naphtha catalytic cracking to olefins over zirconia-titania catalyst," *React. Chem. Eng.*, p., 2021, doi: 10.1039/D1RE00290B.