Supporting Information

Diclofenac derivatives as concomitant inhibitors of cholinesterase, monoamine oxidase, cyclooxygenase-2 and 5-lipoxygenase for the treatment of Alzheimer's disease: Synthesis, pharmacology, toxicity and docking studies

Muhammad Aamir Javed¹, Saba Bibi¹, Muhammad Saeed Jan², Muhammad Ikram³, Asma Zaidi¹, Umar Farooq¹, Abdul Sadiq^{4,*}, Umer Rashid^{1, **}

¹ Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan

² Department of Pharmacy, University of Swabi, Swabi, 23430, KP, Pakistan

¹ Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan

⁴ Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara,

18000 Dir (L), KP, Pakistan.

Correspondence: <u>sadiquom@yahoo.com</u> Umer Rashid** <u>umerrashid@cuiatd.edu.pk</u>

Docking studies

In compound **11**, chlorine of dichlorobenzene moiety forms conventional H-bond with Gln192 and two halogen interactions each with Leu352 and Ser353. Ser353 also forms H-bond with NH group next to dichlorobenzene. Benzene ring next to NH group shows π -alkyl interaction with Arg513 and Val523. This Val523 is also show π -alkyl interaction with triazole ring and dichlorobenzene attached with triazole ring, this dichlorobenzene also shows show π -alkyl interaction with Leu352. Benzene ring of benzene sulfonamide shows π -alkyl interaction with Leu531. Sulfur of sulfonamide moiety form two π -sulfur bond each with Tyr348 and Tyr385 (**Figure S-1a**).

In compound **15** chlorines of dichlorobenzene moiety shows halogen interaction with Pro191 and Gly354. NH moiety next to carbonyl carbon form conventional H-bond with Gln192 and benzene ring next to NH functionality form π -lone pair interaction with Leu352. SO₂ of sulfonamide moiety form conventional H-bond Arg120 (**Figure S-1b**).

In compound **21** chlorine of dichlorobenzene moiety form conventional H-bond with Arg120 and sulfur moiety next to triazole ring show π -sulfur interaction with His90. Benzene of dichlorobenzene part next to NH shows two π - π T-shaped interactions with Tyr385 and Tyr387 respectively and amide π -stacked interaction with Gly526 and Ala527 while π -sulfur interaction with Met522 (**Figure S-1c**).

Figure S-1: 3-D docking interactions of synthesized compounds 11 (a), 15 (b) and 21(c) with COX-2 (PDB ID = 1CX2) active site

Representative ¹H and ¹³C NMR Spectrum

Figure S-2. ¹H NMR spectra of compound 12 (DMSO-d₆, 400 MHz)

Figure S-3. ¹³C NMR spectra of compound 12 (DMSO- d_6 , 100 MHz)

Figure S-4. ¹H NMR spectra of compound 15 (DMSO-d₆, 400 MHz)

Figure S-5. ¹³C NMR spectra of compound 15 (DMSO-d6, 100 MHz)

Figure S-6. ¹H NMR spectra of compound 26 (DMSO-d₆, 400 MHz)

Figure S-7. ¹³C NMR spectra of compound 26 (DMSO- d_6 , 100 MHz)

Figure S-8. HPLC chromatogram of compound 26

Figure S-9. ¹H NMR spectra of compound 27 (DMSO-d₆, 400 MHz)

Figure S-10. ¹³C NMR spectra of compound 27 (DMSO- d_6 , 100 MHz)

Figure S-11. HPLC chromatogram of compound 27

Figure S-12. ¹H NMR spectra of compound 28 (DMSO-*d*₆, 400 MHz)

Figure S-14. ¹H NMR spectra of compound 29 (DMSO-*d*₆, 400 MHz)

Figure S-15. ¹³C NMR spectra of compound **29** (DMSO-*d*₆, 100 MHz)

Figure S-16. HPLC chromatogram of compound 29

Figure S-17. ¹H NMR spectra of compound 31 (DMSO-*d*₆, 400 MHz)

Figure S-18. HPLC chromatogram of compound 31

Figure S-19. ¹H NMR spectra of compound 32 (DMSO-*d*₆, 400 MHz)

Figure S-20. ¹³C NMR spectra of compound 32 (DMSO- d_6 , 100 MHz)

Figure S-21. HPLC chromatogram of compound 32

Figure S-22. ¹H NMR spectra of compound 33 (DMSO-*d*₆, 400 MHz)

Figure S-23. ¹³C NMR spectra of compound 33 (DMSO- d_6 , 100 MHz)

Figure S-24. ¹H NMR spectra of compound **39** (DMSO-d₆, 400 MHz)

Figure S-25. ¹³C NMR spectra of compound 39 (DMSO- d_6 , 100 MHz)

Figure S-26. HPLC chromatogram of compound 39