Incorporation of Al₂O₃, GO, Al₂O₃@GO nanoparticles into water-borne epoxy coatings: Abrasion and corrosion resistance

Jia-qi Huang¹, Kunming Liu², Xinlong Song², Guocheng Zheng², Qing Chen³, Jiadi Sun⁴, Haozhe Jin⁵,

Lanlan Jiang¹, Yusheng Jiang¹, Yi Zhang¹, Peng Jiang¹, Wangping Wu^{1,*}

¹Electrochemistry and Corrosion Laboratory, School of Mechanical Engineering and Rail Transit, Changzhou

University, Changzhou 213164, P.R. China

²Jiangsu Kexiang Anticorrosion Materials Co., Ltd, Changzhou 213100, China

³Zhejiang Fangyuan Test Group, Hangzhou 310018, China

⁴CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd., Changzhou, 213016, China

⁵Key Lab. of Fluid Transmission Technology of Zhejiang Province, Zhejiang, Sci-Tech University, Hangzhou, 310018,

China

*Corresponding author: wwp3.14@163.com; wuwping@cczu.edu.cn

Experimental

The thickness of the coating was measured with a handheld coating thickness meter (BGD 542/2). Sets of several crosshatched scratches, with interscratch distance of 1mm and cross scratches at ~90°, were made on the deposits after drying. A 3M tape (610-1PK special test tape produced by the 3M company) was applied over the grid, placing the center of the tape over the grid and in the area of the grid smoothing into place by a finger. After holding on 90 seconds, the tape was removed by seizing the free end and pulled it off rapidly at 90°. The adhesion force between the layer and the substrate was assessed according to the cross-cut testing standard of ASTM-D3359-09. The cross-cut tests were repeated at least twice for evaluating the adhesion force between the substrate and the layer.

(c)

Figure 1S The thickness of the composite coatings, (a) the neat epoxy coating and m-Al₂O₃/epoxy coating, (b)

mGO/epoxy coating and (c) m-Al₂O₃@GO/epoxy coating

Figure 2S XRD patterns of (a) neat epoxy coating and m-Al₂O₃/epoxy coatings, (b) mGO/epoxy coatings

and (c) m-Al₂O₃@GO/epoxy coatings

Figure 3S OM images of the composite coatings, (a) 3.0 wt% m-Al₂O₃/epoxy coating, (b) 6.0 wt% m-Al₂O₃/epoxy coating, (c) 0.4 wt% mGO/epoxy coating, (d) 0.8 wt% mGO/epoxy coating, (e) 0.4 wt%

m-Al₂O₃@GO/epoxy coating, (f) 0.8 wt% m-Al₂O₃@GO/epoxy coating

Figure 4S Contact angle of the coatings, (a) EP, (b) 1.5 wt% m-Al₂O₃/Epoxy, (c) 4.5 wt% m-Al₂O₃/Epoxy, (d) 7.5 wt% m-Al₂O₃/Epoxy, (e) 0.2 wt% mGO/Epoxy, (f) 0.6 wt% mGO/Epoxy, (g) 1.0 wt% mGO/Epoxy, (h) 0.2 wt% m-

 $Al_{2}O_{3}@GO/Epoxy, (i) \ 0.4 \ wt\% \ m-Al_{2}O_{3}@GO/Epoxy, (j) \ 1.0 \ wt\% \ m-Al_{2}O_{3}@GO/Epoxy$

Figure 5S Dispersion and stability of nanoparticles with different contents in epoxy resin for different holding

times, (a) m-Al $_2O_3$ (b) mGO and (c) m-Al $_2O_3@$ GO hybrids

Figure 6S Digital images of the composite coatings immersed in 3.5 wt.% NaCl solution after 62 days (a) Neat epoxy

and m-Al₂O₃/epoxy coatings, (b) mGO/epoxy coatings and (c) m-Al₂O₃@GO/epoxy coatings

Coating	Digital images of the coatings	Grade
Neat epoxy		5B
1.5% m-Al ₂ O ₃		4B
3.0% m-Al ₂ O ₃		1B
4.5% m-Al ₂ O ₃		0B
6.0% m-Al ₂ O ₃		3B
7.5% m-Al ₂ O ₃		5B
0.2% mGO		3B
0.4% mGO		4B

Table 1S Evaluation of coating adhesion

0.6% mGO	5B
0.8% mGO	3B
1.0% mGO	3B
0.2% m-Al ₂ O ₃ @GO	5B
0.4% m-Al ₂ O ₃ @GO	5B
0.6% m-Al ₂ O ₃ @GO	2B
0.8% m-Al ₂ O ₃ @GO	5B
1.0% m-Al ₂ O ₃ @GO	4B

The adhesive force between the coating and the substrate is evaluated by the tape peeling test. The epoxy resin coating is cut with a knife until it is cut to the substrate surface. The test results are shown in Table 1S. The binding force of the neat epoxy coating was 5B since there is no shedding phenomenon, the same as 7.5 wt% m-Al₂O₃/epoxy coating, 0.6 wt% mGO/epoxy coating and 0.2 wt%, 0.4 wt%, 0.8 wt% m-Al2O3@GO epoxy coating. However, the binding force of the coatings with the addition of particles was not significantly improved to some degree, because the agglomeration of nanoparticles influenced the adhesion of the interface between the coating and the smooth surface of the substrate. We did not focus on the adhesion of the coatings on the substrate, in this study. Of course, if we want to improve the adhesion, the surface of the substrate will be scratched by sandpapers, to make the surface rough, improving the adhesion of the coating.