, Level Factor	Temperature Water carbon		Consister (C)	
	(A)	ratio(B)	Capacity (C)	
1	600°C	1.0	0	
2	700°C	1.5	2.5%	
3	800°C	2.0	5%	

Table 1 S $L_9(3^4)$ Factors and levels of the orthogonal tests

Test number ——	Column number						
	1(A)	2(B)	3(C)	4			
1	1	1	1	1			
2	1	2	3	2			
3	1	3	2	3			
4	2	1	2	3			
5	2	2	1	1			
6	2	3	3	2			
7	3	1	3	2			
8	3	2	2	3			
9	3	3	1	1			

Table 2 S Orthogonal experimental protocol $L_9(3^4)$

Table 3 S Hydrogen selectivity extreme difference analysis

Test		I	Experimental result		
number	1(A)	2(B)	3(C)	4	H ₂ Selectivity
1	1	1	1	1	85.33
2	1	2	3	2	79.24
3	1	3	2	3	83.01
4	2	1	2	3	78.28

5	2	2	1	1	82.30
6	2	3	3	2	77.02
7	3	1	3	2	78.27
8	3	2	2	3	74.67
9	3	3	1	1	79.32
K_1	246.941	241.874	247.573		
K_2	235.959	238.842	237.594		
K_3	234.521	239.349	232.254		
k_1	82.314	80.625	82.524		
k_2	78.653	79.614	79.198		
<i>k</i> ₃	78.174	79.783	77.418		
R_1	4.14	1.011	5.106		

Table 4 S Hydrogen content extreme difference analysis

Test			Experimental result		
number	1(A)	2(B)	3(C)	4	H ₂ Content %
1	1	1	1	1	78.405
2	1	2	3	2	66.616
3	1	3	2	3	67.167
4	2	1	2	3	64.958
5	2	2	1	1	63.065
6	2	3	3	2	74.511
7	3	1	3	2	56.353
8	3	2	2	3	59.882
9	3	3	1	1	62.728
K_1	212.188	199.716	212.798		
K_2	203.119	189.563	194.302		

K_3	178.963	204.406	186.585
k_1	70.729	66.572	70.933
k_2	67.706	63.188	64.767
k_3	59.654	68.135	62.195
R_1	11.075	4.947	8.738

 Table 5 S Model Summary

	R	R ²	Adjusted R ²	Error in the standard estimates
Hydrogen selectivity	0.891	0.795	0.726	1.71864
Hydrogen content	0.910	0.828	0.771	3.29358

Table 6 S Variance of hydrogen gas selectivity

	Quadratic	Free degree	Mean	F	Significance
	sum	Fiee degree	square	I'	Significance
Regression	68.576	2	34.288	11.608	0.009
Residual	17.722	6	2.954		
Total	86.298	8			

Table 7 S Variance of hydrogen content

	Quadratic	Erros dograd	Mean	F	Significance
	sum	riee degree	square	Г	Significance
Regression	313.866	2	156.933	14.467	0.005
Residual	65.086	6	10.848		
Total	378.952	8			

Fig. 1 S. SEM results of prepared Fe-Al OCs

Fig. 2 S. EDX micrographs of prepared Fe-Al OCs

Fig. 3 S. H₂-TPR patterns of (a) three fresh OCs; (b)After five cycles of OCs of 0 under different reaction conditions; (c)After five cycles of OCs capacity of 2.5% under different reaction conditions; (d)After five cycles of OCs capacity of 5% under different reaction conditions

Fig. 4 S. Orthogonal test effect graph (a) Optimum hydrogen content (b) Optimum hydrogen selectivity

Fig. 5 S. Gas content of glycerol reforming with different OCs in five cycles

Fig. 5 S. (continued).

Fig. 5 S. (continued).

Fig. 6 S. Glycerol reaction pathway