Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting information

High performance ozone decomposition over MnAl-based mixed oxide catalysts derived from layered double hydroxide

Mingpan Shao, Wei Hong, Tianle Zhu, Xinxin Jiang, Ye Sun*, Shiyu Hou School of Space and Environment, Beihang University, Beijing 100191, China

*Corresponding author

Ye Sun; Address: School of Space and Environment, Beihang University, Beijing 100191, China.

E-mail: suny@buaa.edu.cn (Y. Sun).

Supplementary Figures

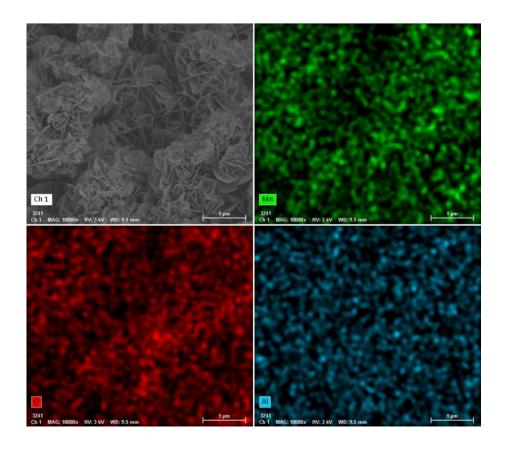


Fig.S1 SEM image and EDS mapping of the Mn₂AlO-400 sample.

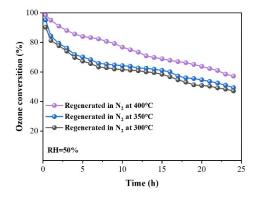


Fig. S2 Ozone conversion of Mn₂AlO-400 after regeneration at 300-400 °C.

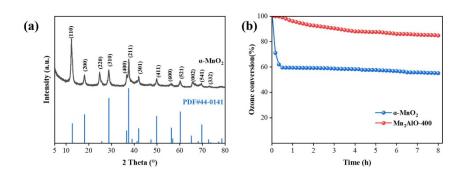


Fig.S3 (a) XRD pattern of α -MnO₂; (b) Ozone conversion over α -MnO₂ and Mn₂AlO-400 samples.