Supplementary Information for

High molecular weight PE elastomers through 4,4-difluorobenzhydryl substitution in

symmetrical α -diimino-nickel ethylene polymerization catalysts

Yuting Zheng,^{a,b} Shu Jiang,^{a,b} Ming Liu,^b Zhixin Yu,^{*,a} Yanping Ma,^{b,c} Gregory A. Solan, ^{*,b,c} Wenjuan Zhang,^{b,d} Tongling Liang,^b Wen-Hua Sun ^{*,b}

^a School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.

^b Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^c Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.

^d Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.

	Table of contents	page
1.	Figure S1 ¹ H NMR spectrum of L1.	S3
2.	Figure S2 ¹ H NMR spectrum of L2.	S3
3.	Figure S3 ¹ H NMR spectrum of L3.	S4
4.	Figure S4 ¹ H NMR spectrum of L4.	S4
5.	Figure S5 ¹ H NMR spectrum of L5.	S5
6.	Figure S6 ¹³ C NMR spectrum of L1.	S6
7.	Figure S7 ¹³ C NMR spectrum of L2.	S6
8.	Figure S8 ¹³ C NMR spectrum of L3.	S7
9.	Figure S9 ¹³ C NMR spectrum of L4.	S7
10.	Figure S10 ¹³ C NMR spectrum of L5.	S 8
11.	Figure S11 FT-IR spectrum of L1.	S9
12.	Figure S12 FT-IR spectrum of L2.	S9
13.	Figure S13 FT-IR spectrum of L3.	S10
14.	Figure S14 FT-IR spectrum of L4.	S10
15.	Figure S15 FT-IR spectrum of L5.	S11
16.	Figure S16 FT-IR spectrum of Ni1.	S11
17.	Figure S17 FT-IR spectrum of Ni2.	S12
18.	Figure S18 FT-IR spectrum of Ni3.	S12
19.	Figure S19 FT-IR spectrum of Ni4.	S13
20.	Figure S20 FT-IR spectrum of Ni5.	S13
21.	Figure S21 ¹ H NMR spectrum of Ni1.	S14
22.	Figure S22 ¹ H NMR spectrum of Ni2.	S14
23.	Figure S23 ¹ H NMR spectrum of Ni3.	S15
24.	Figure S24 ¹ H NMR spectrum of Ni4.	S15
25.	Figure S25 ¹ H NMR spectrum of Ni5.	S16
26.	Figure S26 ¹⁹ F NMR spectrum of Ni1.	S17
27.	Figure S27 ¹⁹ F NMR spectrum of Ni2.	S17
28.	Figure S28 ¹⁹ F NMR spectrum of Ni3.	S18
		-

- 29. Figure S29 ¹⁹F NMR spectrum of Ni4.S18
- 30. Figure S30 19 F NMR spectrum of Ni5. S19
- 31. Figure S31 ¹⁹F NMR spectra of a) L1 and its nickel complex Ni1 along with that S19 for b) L3 and Ni3.
- Figure S32 a) GPC traces and b) plots of catalytic activity and molecular weight S20 of the polyethylene produced using Ni2/MAO at different Al:Ni molar ratios (entries 1 5, Table 3)
- Figure S33 a) GPC traces and b) plots of catalytic activity and molecular weight S20 of the polyethylene produced using Ni2/MAO at various run temperatures (entries 2 and 6 9, Table 3)
- Figure S34 a) GPC traces and b) plots of catalytic activity and molecular weight S21 of the polyethylene produced using Ni2/MAO at various time (entries 2 and 10-13, Table 3).
- 35. Figure S35 a) GPC traces and b) plots of catalytic activity and molecular weight S21 of the polyethylene produced using Ni1 Ni5 in combination with MAO (entries 2 and 16 19, Table 3).
- 36. **Figure S36** a) GPC traces and b) plots of catalytic activity and molecular weight S22 of the polyethylene produced using Ni2/ EtAlCl₂ at different Al:Ni molar ratios (entries 1-6, Table 4).
- 37. **Figure S37** a) GPC traces and b) plots of catalytic activity and molecular weight S22 of the polyethylene produced using Ni2/ EtAlCl₂ at different run temperatures (entries 4 and 7-10, Table 4).
- 38. **Figure S38** GPC traces and b) plots of catalytic activity and molecular weight of S23 the polyethylene produced using Ni2/ EtAlCl₂ at different run time (entries 4 and 11-14, Table 4).
- 39. Figure S39 a) GPC traces and b) plots of the catalytic activity and molecular S23 weight of the polyethylene produced using Ni1 Ni5 in combination with $EtAlCl_2$ (entries 2 and 17 20, Table 4).
- 40. Figure S40 ¹³C NMR spectrum of PE-MAO30Ni2 produced using Ni2/MAO S24 (entry 2, Table 3)
- 41. **Figure S41** ¹³C NMR spectrum of PE-EtAlCl₂40Ni5 produced using Ni5/ S24 EtAlCl₂ (entry 21, Table 4)
- 42. **Figure S42** ¹³C NMR spectrum of PE-Et₂AlCl40Ni5 produced using Ni5/Et₂AlCl S25 (entry 23, Table 4)
- 43. Figure S43 ¹³C NMR spectrum of PE-EASC40Ni5 produced using Ni5/EASC S25 (entry 24, Table 4)
- 44. **Figure S44** Stress-strain recovery tests for samples PE-EtAlCl₂40Ni5, PE- S26 EtAlCl₂50Ni5, PE-M40Ni5, PE-Et₂AlCl40Ni5 and PE-EASC40Ni5
- 45. Table S1 Crystal data and structure refinements for L3, Ni1 and Ni5. S27

¹H NMR (400 MHz, CDCl₃, 25 °C) spectra

Figure S2 ¹H NMR spectrum of L2

Figure S4 ¹H NMR spectrum of L4; * refers to δ H for water

Figure S5 ¹H NMR spectrum of L5; * refers to δ H for water, n-hexane and grease.

Figure S7 ¹³C NMR spectrum of L2

Figure S9 ¹³C NMR spectrum of L4

Figure S10 ¹³C NMR spectrum of L5

FT-IR spectra

Figure S11 FT-IR spectrum of L1

Figure S12 FT-IR spectrum of L2

Figure S13 FT-IR spectrum of L3

Figure S14 FT-IR spectrum of L4

Figure S15 FT-IR spectrum of L5

Figure S16 FT-IR spectrum of Ni1

Figure S17 FT-IR spectrum of Ni2

Figure S18 FT-IR spectrum of Ni3

Figure S19 FT-IR spectrum of Ni4

Figure S20 FT-IR spectrum of Ni5

¹H NMR (470 MHz, CDCl₃, 25 °C) spectra

Figure S21 ¹H NMR spectrum of Ni1 along with an expansion of the δ 10.0 to 0.0 ppm region

Figure S22 ¹H NMR spectrum of Ni2 along with an expansion of the δ 10.0 to 0.0 ppm region

Figure S23 ¹H NMR spectrum of Ni3 along with an expansion of the δ 10.0 to 0.0 ppm region

Figure S24 1H NMR spectrum of Ni4 along with an expansion of the δ 10.0 to 0.0 ppm region

Figure S25 ¹H NMR spectrum of Ni5 along with an expansion of the δ 10.0 to 0.0 ppm region

¹⁹F NMR (470 MHz, CDCl₃, 25 °C) spectra

Figure S26 ¹⁹F NMR spectrum of Ni1

Figure S27 ¹⁹F NMR spectrum of Ni2

Figure S29 ¹⁹F NMR spectrum of Ni4

Figure S31 ¹⁹F NMR spectra of a) L1 and its nickel complex Ni1 along with that for b) L3 and Ni3.

GPC traces for the polyethylenes

Figure S32 a) GPC traces and b) plots of catalytic activity and molecular weight of the polyethylene produced using Ni2/MAO at different Al:Ni molar ratios (entries 1 - 5, Table 3).

Figure S33 a) GPC traces and b) plots of catalytic activity and molecular weight of the polyethylene produced using Ni2/MAO at various run temperatures (entries 2 and 6 - 9, Table 3).

Figure S34 a) GPC traces and b) plots of catalytic activity and molecular weight of the polyethylene produced using **Ni2**/MAO at various time (entries 2 and 10-13, Table 3).

Figure S35 a) GPC traces and b) plots of catalytic activity and molecular weight of the polyethylene produced using Ni1 – Ni5 in combination with MAO (entries 2 and 16 - 19, Table 3).

Figure S36 a) GPC traces and b) plots of catalytic activity and molecular weight of the polyethylene produced using Ni2/ EtAlCl₂ at different Al:Ni molar ratios (entries 1-6, Table 4)

Figure S37 a) GPC traces and b) plots of catalytic activity and molecular weight of the polyethylene produced using Ni2/ EtAlCl₂ at different run temperatures (entries 4 and 7-10, Table4)

Figure S38 a) GPC traces and b) plots of catalytic activity and molecular weight of the polyethylene produced using Ni2/ $EtAlCl_2$ at different run time (entries 4 and 7-10, Table4)

Figure S39 a) GPC traces and b) plots of the catalytic activity and molecular weight of the polyethylene produced using Ni1 – Ni5 in combination with $EtAlCl_2$ (entries 2 and 17 – 20, Table 4).

¹³C NMR (470 MHz, chlorobenzene-d₅, 100 °C) spectra

Figure S41 ¹³C NMR spectrum of PE-EtAlCl₂40Ni5 produced using Ni5/EtAlCl₂ (entry 21, Table 4)

¹³C NMR (470 MHz, o-dichlorobenzene-d₄, 100 °C) spectra

Figure S42 ¹³C NMR spectrum of PE-Et₂AlCl40Ni5 produced using Ni5/Et₂AlCl (entry 23, Table 4)

Figure S43 ¹³C NMR spectrum of PE-EASC40Ni5 produced using Ni5/EASC (entry 24, Table4)

Stress-strain recovery test (performed at 30 °C)

Figure S44Stress-strain recovery tests for samplesPE-EtAlCl240Ni5, PE-EtAlCl250Ni5, PE-M40Ni5,PE-Et2AlCl40Ni5andPE-EASC40Ni5

	Ni1	Ni5	L1		
Empirical formula	$C_{210}H_{156}F_{24}N_6$	$C_{92}H_{81}Br_4F_8N_4Ni_2$	$C_{74}H_{60}Br_2F_8N_2Ni$		
Formula weight	3219.40	1831.67	1347.77		
Temperature/K	170.00(10)	170.00(13)	169.99(12)		
Crystal system	triclinic	triclinic	monoclinic		
Space group	P-1	P-1	$P2_1/n$		
a/Å	11.08370(10)	15.1623(12)	10.8443(4)		
b/Å	19.80860(10)	15.6426(9)	36.4718(12)		
c/Å	37.8410(3)	18.6622(9)	16.3540(7)		
α/\circ	89.0030(10)	78.343(4)	90		
β/°	84.9140(10)	78.089(5)	106.635(4)		
γ/°	83.4140(10)	78.104(6)	90		
Volume/Å ³	8220.55(11)	4178.7(5)	6197.5(4)		
Ζ	2	2	4		
$ ho_{calc}g/cm^3$	1.301	1.456	1.444		
µ/mm⁻¹	0.778	3.337	2.542		
F(000)	3348.0	1858.0	2752.0		
Crystal size/mm ³	$0.2\times0.15\times0.1$	$0.1\times0.05\times0.02$	$0.3\times0.1\times0.02$		
Radiation	Cu Ka (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)	Cu Ka (λ = 1.54184)		
2⊖ range for data collection/°	4.49 to 150.728	4.908 to 133.2	4.846 to 151.324		
Index ranges	$-13 \le h \le 13, -24 \le k$ $\le 24, -47 \le 1 \le 41$	$-18 \le h \le 18, -18 \le k$ $\le 18, -22 \le 1 \le 22$	$-12 \le h \le 13, -32 \le k$ $\le 44, -20 \le 1 \le 20$		
Reflections collected	120556	55023	46177		
Independent reflections	$32478 [R_{int} = 0.0293, R_{sigma} = 0.0299]$	14739 [$R_{int} = 0.1001$, $R_{sigma} = 0.0840$]	12209 [$R_{int} = 0.1010$, $R_{sigma} = 0.0654$]		
Data/restraints/para meters	32478/0/2173	14739/1068/1200	12209/0/790		
$\begin{array}{c} \text{Goodness-of-fit on} \\ F^2 \end{array}$	1.281	1.344	0.998		
Final R indexes	$R_1 = 0.1097, wR_2 =$	$R_1 = 0.1352,$	$R_1 = 0.1343,$		
$[1 \ge 2\sigma(1)]$ Final D indexes [all	0.289/	$WK_2 = 0.3446$ $P_1 = 0.1802$	$WR_2 = 0.3939$ $P_1 = 0.1624$		
rmar K muexes [all data]	$K_1 = 0.1223, WK_2 = 0.3090$	$K_1 = 0.1602,$ wR ₂ = 0.3816	$m_1 = 0.1034,$ wR ₂ = 0.4189		
Largest diff. peak/hole / e Å ⁻³	1.37/-0.55	2.88/-0.96	3.39/-1.02		

Table S1 Crystal data and structure refinements for L3, Ni1 and Ni5