On the formation of 2- and 3-cyanofurans and their protonation in interstellar medium conditions: quantum chemical evidences.

René Simbizi^{a,c}, Désiré Nduwimana^{a,c}, Joël Niyoncuti^{a,c}, Prosper Cishahayo^{b,d} and Godefroid Gahungu^{b,d}

^aFaculté des Sciences, Département de Physique, Université du Burundi, BP 2700 Bujumbura, Burundi.

^bFaculté des Sciences, Département de Chimie, Université du Burundi, BP 2700 Bujumbura, Burundi.

^cFaculté des Sciences, Centre de Recherche en Mathématique & Physique (CRMP) , Université du Burundi, BP 2700 Bujumbura, Burundi.

^dFaculté des Sciences, Centre de Recherche en Sciences Naturelles et Environnementales (CRSNE) , Université du Burundi, BP 2700 Bujumbura, Burundi.

Supplementary Information (SI)

Scheme S1 – Chemical structures of (a) furan, (b) 2-cyanofuran (2 CF), (c) 3-cyanofuran (3 CF).

Figure S2 – Simulated IR spectra for (a) 2 CFH^+ and (b) 3 CFH^+ .

Figure S3 – Simulated Raman spectra for (a) 2 CFH^+ and (b) 3 CFH^+ .

Paramètres	HF	MP2	MP3	M062X	M062X	B3LYP	B3LYP	B3LYP	B3LYP			
Géométriques	Basis^1	Basis^2	$Basis^3$	Basis^2	Basis^4	Basis^1	Basis^2	Basis^4	Basis^5	Basis^6	Basis^7	Exp.
Bond lengths (in Å)												
01-C5/01-C2	1.3438	1.3653	1.3566	1.3542	1.3530	1.3643	1.3641	1.3621	1.3628	1.3656	1.3513	1.362
C2=C3/C4=C5	1.3391	1.3664	1.3607	1.3563	1.3511	1.3607	1.3606	1.3546	1.3553	1.3627	1.3506	1.361
C3-C4	1.4410	1.4273	1.4419	1.4341	1.4331	1.4357	1.4355	1.4327	1.4332	1.4371	1.4324	1.431
m C2-H6/C5-H9	1.0681	1.0752	1.0786	1.0782	1.0744	1.0793	1.0787	1.0744	1.0742	1.0794	1.075	1.075
C3-H7/C4-H8	1.0702	1.0764	1.0798	1.0791	1.0751	1.0811	1.0803	1.0758	1.0757	1.0816	1.077	1.077
Bond angles (m^{-1})	107 1	106 G	106 S	107 7	106.0	106 S	106.0	106.7	106 S	107.0	107.0	I
O1 O3 O1 O3 O1 O5 O1 O5 O1 O5 O1 O5	110.8	110 5	110.0	110 G	110.7	110 F	1105	110 F	110 /	110.4	110.6	110.7
	105 6	106.9	102 7	105.0	102 0	106.1	106.1	106.1	106 901	106 1	102 0	106.0
C3 = C4 - C3 / C2 = C3 - C4	0.6UL	7.001	1.001	100.9	100.9	1.001	T.001	T.001	100.2	1.001	100.9	100.U
01-C2-H6/O1-C5-H9	116.4	115.7	115.9	115.9	116.1	115.6	115.8	116.0	116.0	115.7	116.1	115.9
C3-C2-H6/C4-C5-H9	133.05	133.8	133.2	133.6	133.3	133.8	133.7	133.5	133.5	133.9	133.3	ı
C3-C4-H8/C4-C3-H7	127.6	127.6	127.7	127.5	127.7	127.3	127.2	127.4	127.5	127.4	127.6	127.9
<u>Rotationnal constants</u>												
A(MHZ)	9605.1	9492.0	9499.1	9529.5	9559.9	9459.7	9460.5	9500.6	9484.5	9428.7	9569.4	9446.9
B(MHZ)	9535.3	9201.9	9258.7	9335.2	9385.4	9247.9	9252.7	9317.9	9318.0	9237.5	9400.5	9246.6
C(MHZ)	4785.1	4672.4	4688.7	4715.7	4735.9	4676.3	4677.7	4704.1	4700.3	4666.1	4742.1	4670.8
$\Delta A (MHZ)$	158.2	45.1	52.2	82.6	113	12.8	13.6	53.7	37.6	-18.2	122.5	0.0
$\Delta \ { m B} \ ({ m MHZ})$	358.5	-44.7	12.1	88.6	138.8	1.3	6.1	71.3	71.4	-9.1	153.9	0.0
$\Delta C (MHZ)$	114.3	1.6	17.9	44.9	65.1	5.5	6.9	33.3	29.5	-4.7	71.3	0.0
¹ Basis set : $6-31G(d)$; ² Basis set: $6-311g(2df,2p)$.	set: 6-31G	(d,p); ³Ba	sis set: 6-	311G(d); ⁴ 1	Basis set: (3-311G(2d,2]); ⁵ Basis s	et: 6-311+0	3(2d, 2p); 61	Basis set:	6-31+G(d)	; ⁷ Basis

S3

	Fura	an	2 C.	F	3CF	2CFH ⁺	3CFH ⁺	HCN	NH^+
	Calc	$\operatorname{Exp}^{\mathrm{a}}$	Calc	$\operatorname{Exp}^{\mathrm{b}}$	Calc	Calc	Calc	Calc	$\operatorname{Exp^{c}}$
Bond length									
O-C2	1.3584	1.362	1.3589	-	1.3422	1.3722	1.3212		
O-C5	1.3584	1.362	1.350	-	1.3605	1.3503	1.3796		
C2=C3	1.3622	1.361	1.3679	-	1.3746	1.3726	1.3909		
C3-C4	1.4520	1.431	1.4462	-	1.44106	1.4423	1.4514		
C4=C5	1.3622	1.361	1.3730	-	1.3478	1.3663	1.3519		
C2/C3-C6	-	-	1.099	-	1.4163	1.4099	1.3856		
$C \equiv N$	-	-	1.1717	-	1.1655	1.1716	1.1571	1.1397	1.1368
N-H	-	-	-	-	-	1.0113	1.0069	1.0171	1.0091
Bond angle									
C5-O-C2	107.13	106.5	105.42	-	107.35	105.60	108.77		
O-C2=C3	110.814	110.7	111.29	-	110.41	111.64	108.63		
O-C5=C4	110.814	110.7	113.28	-	110.85	111.99	111.09		
C5=C4-C3	105.622	106.0	103.52	-	105.96	105.89	104.04		
C2=C3-C4	105.622	106.0	105.66	-	105.43	104.87	107.48		
$C2/C3$ - $C6$ \equiv N	-	-	-		179.54	175.05	179.34		
$C6 \equiv$ N-H	-	-		-		155.00	179.87		

⁽¹⁾Numbering scheme used is that of Scheme S1.; ^aExperimental data from Bak et al. (1962). ^bExperimental data from Engelbrecht & Sutter (1976). ^cExperimental data from Amano and Keiichi (1986).

 $\label{eq:Table S3-G2MP2} \begin{array}{l} \mbox{and G3 Proton Affinity (PA in kJ/mol) of 2-cyanofuran (2 CF) and 3-cyanofuran (3 CF) at different sites for $T=298\,K$ and 10 K. \end{array}$

		T = 2	298 K			T =	10 K	
	20	F	30	F	20	F	3 C	F
Site ⁽¹⁾	G2MP2	G3	G2MP2	G3	G2MP2	G3	G2MP2	G3
1	643.39	642.18	636.48	635.54	$635,\!93$	634.71	631.33	630.39
2	732.07	727.39	753.58	751.89	726.97	722.29	748.65	746.96
3	702.78	701.18	677.78	672.71	698.23	696.65	672.97	667.90
4	709.78	707.45	709.00	706.34	705.07	702.76	704.26	701.60
5	747.83	746.38	747.75	745.32	742.97	735.37	742.78	740.35
Ν	795.14	796.35	801.47	802.75	790.48	791.69	796.57	797.85

⁽¹⁾Numbering scheme used is that of Scheme S1; ^aExperimental data from Bak et al. (1962) ^bExperimental data from Engelbrecht & Sutter (1967)

		T = 1	150 K			T =	5 K	
	20	F	30	F	2 C	F	30	F
Site	G2MP2	G3	G2MP2	G3	G2MP2	G3	G2MP2	G3
1	647.21	645.99	634.11	633.18	638.19	636.98	631.23	630.29
2	735.89	731.20	751.27	749.58	726.87	722.19	748.55	746.86
3	707.15	699.20	675.47	670.41	698.13	696.55	672.87	667.80
4	707.68	705.36	706.88	704.22	704.97	702.65	686.37	701.50
5	745.57	744.11	745.42	743.00	742.87	741.43	725.12	740.24
Ν	793.15	794.35	799.32	800.60	790.38	791.59	778.84	797.75

Table S5 –	Gase phase	G2MP2 and	G3 calculated	enthalpy, er	ntropy and	Gibbs free	e energy	variations	$(\Delta_{\rm r} {\rm H}, \Delta_{\rm r} {\rm S})$	and $\Delta_r G$ i	n
	$kJ mol^{-1}) c$	of reaction pro	ducing cyanof	urans and th	eir protona	ted forms	(T = 150)	$K \ {\rm and} \ T =$	5 K for P =	10 ⁻⁵ atm).

			T = 150 K			T = 5 K		
Equation of the reaction	-	$\Delta_{\rm r} {\rm H}$	$\Delta_r G$	$\Delta_r S$	$\Delta_{\rm r} {\rm H}$	$\Delta_r G$	$\Delta_{\rm r}S$	level of theory
$C \parallel O^{+} \mid CN^{-} \rightarrow DCE \mid \Pi$	(1)	-566.33	-557.82	-0.056	-533.38	-533.20	-0.036	G2MP2
$C_4H_3O^+ + CN \longrightarrow 2CF + H$	(1)	-569.11	-560.59	-0.056	-568.94	-568.75	-0.038	G3
	(2)	-573.21	-564.72	-0.056	-540.24	-540.06	-0.036	G2MP2
$C_4H_3O^+ + CN^- \longrightarrow 3CF^+ H$	(4)	-575.26	-566.76	-0.056	-575.08	-574.88	-0.038	G3
	(9)	-379.19	-345.81	-0.222	-375.23	-374.58	-0.128	G2MP2
$C_4H_3OCN + H_3 + \longrightarrow 2CF + H_2$	(3)	-376.34	-373.42	-0.019	-375.98	-375.95	-0.007	G3
	(Λ)	-385.36	-351.86	-0.223	-381.32	-380.68	-0.128	G2MP2
$C_4 H_3 OCN + H_3 \xrightarrow{\sim} 3 CF - H^+ + H_2$	(4)	-382.60	-379.54	-0.020	-382.15	-382.12	-0.007	G3

Table S6 – Potential energy distribution of fundamental vibrational modes of $2\,{\rm CFH^+}$

Frequency	PED	Mode		At	oms^1		PED	Mode		At	oms^1	
(cm^{-1})	(%)		h	k	1	m	(%)		h	k	1	m
In - plane modes												
3475	97%	$\nu_{ m NH}$	7	11	0	0						
3176	97%	$\nu_{\rm CH}$	5	10	0	0						
3130	61%	$\nu_{\rm CH}$	3	8	0	0	37%	$\nu_{\rm CH}$	4	9	0	0
3122	60%	$\nu_{\rm CH}$	4	9	0	0	38%	$\nu_{\rm CH}$	5	10	0	0
2232	85%	$\nu_{C\equiv N}$	6	7	0	0	12%	$\nu_{\rm CC}$	3	6	0	0
1546	36%	$\nu^{}_{\rm C=C}$	2	3	0	0	23%	$\nu_{\rm C=C}$	4	5	0	0
	7%	$\nu_{\rm CC}$	3	6	0	0	7%	$\delta_{\rm CH}$	4	3	8	0
	6%	$\delta_{\rm CH}$	3	4	9	0						
1437	29%	$\nu_{\rm C=C}$	4	5	0	0	25%	$\nu^{}_{\rm C=C}$	2	3	0	0
	13%	$\delta_{\rm CH}$	1	5	10	0	7%	$\delta_{\rm OC}$	2	1	5	0
	7%	$\delta_{\rm CH}$	4	5	10	0	6%	$\nu_{\rm CC}$	3	6	0	0
1337	19%	$\nu_{\rm CC}$	3	4	0	0	17%	$\delta {\rm CH}$	3	4	9	0
	11%	$\delta_{\rm CH}$	4	5	10	0	9%	$\delta_{\rm CH}$	4	5	10	0
	9%	$\nu_{\rm OC}$	1	5	0	0	5%	$\delta_{\rm CH}$	2	3	8	0
1211	38%	$\nu_{\rm OC}$	1	2	0	0	23%	$\nu_{\rm CC}$	3	6	0	0
	5%	$\delta_{\rm CC}$	1	2	3	0						
1190	26%	$\delta_{\rm CH}$	2	3	8	0	23%	$\delta_{\rm CH}$	4	3	8	0
	14%	$\nu_{\rm CC}$	3	4	0	0	13%	$\delta_{ m CH}$	1	5	10	0
	8%	$\delta_{\rm CH}$	4	5	10	0	5%	$\nu_{\rm CH}$	3	6	0	0
1135	39%	ν_{OC}	1	5	0	0	20%	$\delta_{ m CH}$	1	5	10	0
	12%	$\nu^{}_{\rm C=C}$	4	5	0	0	11%	δ_{CH}	4	5	10	0
1062	28%	$\nu_{\rm OC}$	1	5	0	0	19%	$\delta_{\rm CH}$	3	4	9	0
	17%	$\delta_{\rm CH}$	5	4	9	0	8%	$\nu_{\rm C=C}$	4	5	0	0
	6%	$\nu_{\rm CC}$	3	4	0	0	5%	$\delta_{\rm CH}$	4	5	10	0
975	33%	$\nu_{\rm CC}$	3	4	0	0	21%	$\delta_{\rm CH}$	4	3	8	0
	12%	$\delta_{\rm CH}$	3	4	9	0	11%	$\delta_{\rm CC}$	2	3	8	0
	10%	$\delta_{C=C}$	5	4	9	0						
918	29%	$\nu_{\rm OC}$	1	2	0	0	16%	δ_{OC}	2	1	5	0
	11%	$\delta_{\rm CH}$	4	5	10	0	8%	$\nu_{\rm C=C}$	2	3	0	0
	6%	$\delta_{\rm CH}$	5	4	9	0						
872	25%	$\delta_{\rm CC}$	3	4	5	0	24%	δ_{OC}	4	5	1	0
	121%	$\delta_{\rm CC}$	2	3	4	0	9%	δ_{OC}	2	1	5	0
	9%	$\delta_{\rm CH}$	2	3	8	0	7%	$\delta_{\rm CH}$	3	4	9	0
590	39%	$\delta_{\rm CN}$	2	6	7	0	15%	$\delta_{\rm CNH}$	6	7	11	0

		Tabl	e S6	- (0	Conti	nued)						
Frequency	PED	Mode		At	oms^1		PED	Mode		At	oms^1	
(cm ⁻¹)	(%)		h	k	1	m	(%)		h	k	1	m
	12%	$\delta_{ m CN}$	2	6	7	0	9%	$\nu_{\rm CC}$	1	2	6	0
575	24%	$\nu_{\rm CN}$	2	6	7	0	20%	$\delta_{ m CNH}$	6	7	11	0
	10%	$\delta_{ m CC}$	1	2	6	0	9%	$\delta_{ m CC}$	3	2	6	0
555	47%	$\nu_{\rm CC}$	2	6	0	0	11%	$\delta_{ m CC}$	1	2	3	0
	8%	$\nu_{C\equiv N}$	6	7	0	0	6%	$\delta_{ m OC}$	2	1	5	0
	5%	δ_{CC}	2	3	4	0						
279	62%	$\delta_{\rm CNH}$	2	6	7	0	15%	$\nu_{C\equiv N}$	6	7	0	0
	11%	δ_{CN}	2	6	7	0						
185	48%	$\delta_{ m CN}$	2	6	7	0	23%	$\delta_{ m CC}$	1	2	6	0
	22%	$\delta_{ m CC}$	3	2	6	0						
Out-of-plane modes												
875	31%	$\gamma_{\rm HCCH}$	8	3	4	9	24%	$\gamma_{\rm HCCH}$	9	4	5	10
	9%	$\gamma_{ m OCCH}$	1	5	4	9	8%	$\gamma_{\rm CCCH}$	6	2	3	8
	7%	$\gamma_{\rm CCCH}$	2	3	4	9	7%	$\gamma_{ m OCCH}$	1	2	3	8
839	28%	$\gamma_{\rm HCCH}$	9	4	5	10	23%	$\gamma_{\rm CCCH}$	3	4	5	10
	10%	$\gamma_{\rm CCCH}$	6	2	3	8	10%	$\gamma_{\rm COCH}$	2	1	5	10
	9%	$\gamma_{\rm CCCH}$	5	4	3	8	8%	$\gamma_{ m OCCH}$	1	2	3	8
740	30%	$\gamma_{ m OCCH}$	1	5	4	9	22%	$\gamma_{\rm CCCH}$	2	3	4	9
	11%	$\gamma_{ m OCCH}$	1	2	3	8	10%	$\gamma_{\rm CCCH}$	6	2	3	8
	9%	$\gamma_{\rm CCCH}$	3	4	5	10	6%	$\gamma_{\rm CCCH}$	5	4	3	8
630	23%	$\gamma_{\rm CCNH}$	2	6	7	11	22%	$\gamma_{ m CCN}$	0	2	6	7
	11%	$\gamma_{ m CCN}$	3	6	7	9	7%	$\gamma_{ m COCC}$	5	1	2	3
	7%	$\gamma_{ m OCCC}$	1	2	3	4	6%	$\gamma_{\rm CCCH}$	6	2	3	8
542	78%	$\gamma_{\rm CCNH}$	2	6	7	11						
505	85%	$\gamma_{\rm CCN}$	0	2	6	7						
179	38%	$\gamma_{ m CCCC}$	4	3	2	6	23%	$\gamma_{\rm CCCH}$	6	2	3	8
	21%	$\gamma_{\rm COCC}$	5	1	2	6	11%	$\gamma_{ m CCN}$	0	2	6	7

^aOnly contributions greater than 5% were taken into account; ^bSee Scheme S1 for atom numbering; ^c ν : stretching; δ : in-plane bending modes; γ : out-of-plane bending modes.

Frequency	PED	Mode		At	oms^1		PED	Mode		At	oms^1	
(cm^{-1})	(%)		h	k	1	m	(%)		h	k	1	m
In - plane modes												
3486	97%	$\nu_{ m NH}$	7	11	0	0						
3147	82%	$\nu_{\rm CH}$	5	10	0	0	16%	$\nu_{\rm CH}$	4	9	0	0
3120	90%	$\nu_{\rm CH}$	2	8	0	0	9%	$\nu_{\rm CH}$	4	9	0	0
3120	90%	$\nu_{\rm CH}$	4	9	0	0	17%	$\nu_{\rm CH}$	5	10	0	0
	8%	$\nu_{\rm CH}$	2	8	0	0						
2218	79%	$\nu_{C\equiv N}$	6	7	0	0	18%	$\nu_{\rm CC}$	2	6	0	0
1591	54%	$\nu_{\rm C=C}$	4	5	0	0	10%	$\nu_{\rm C=C}$	2	3	0	0
	8%	δ_{CH}	3	4	9	0						
1531	35%	$\nu_{\rm C=C}$	2	3	0	0	15%	$\nu_{\rm C=C}$	3	6	0	0
	13%	$\nu_{C=C}$	4	5	0	0	8%	$\delta_{\rm CH}$	1	2	8	0
	7%	δ_{CH}	3	2	8	0						
1368	40%	ν_{CC}	3	4	0	0	15%	$\nu C = C$	2	3	0	0
	6%	$\delta_{\rm CH}$	5	4	9	0	6%	$\delta_{\rm CH}$	4	5	10	0
										(Ca	ontinu	ued)

 ${\bf Table \ S7-Potential\ energy\ distribution\ of\ fundamental\ vibrational\ modes\ of\ 3\,{\rm CFH^+}$

		Tab	le S7	′ – ((Conti	nued)					- 1	
Frequency	PED	Mode		At	$coms^1$		PED	Mode		At	oms^1	
(cm^{-1})	(%)		h	k	1	m	(%)		h	k	1	m
1287	23%	$\nu_{\rm CC}$	3	6	0	0	19%	$\nu_{\rm OC}$	1	2	0	0
	18%	$\delta_{\rm CH}$	1	2	8	0	13%	$\delta_{\rm CH}$	3	2	8	0
	6%	$\nu_{C\equiv N}$	6	7	0	0						
1222	19%	$\delta_{\rm CH}$	4	5	10	0	18%	$\delta_{\rm CH}$	1	5	10	0
	16%	$\delta_{\rm CH}$	3	2	8	0	13%	$\delta_{\rm CH}$	1	2	8	0
	11%	$\delta_{\rm CH}$	5	4	9	0	6%	$\delta_{\rm CH}$	3	4	9	0
1140	51%	$\nu_{\rm OC}$	1	2	0	0	21%	$\delta_{\rm CH}$	1	2	8	0
	7%	$\delta_{\rm CC}$	1	2	8	0	6%	δ_{CH}	3	2	8	0
1099	28%	$\delta_{ m CH}$	5	4	9	0	19%	δ_{CH}	1	5	10	0
	18%	$\delta_{ m CH}$	3	4	9	0	10%	$\delta_{ m CH}$	4	5	10	0
	7%	ν_{C-C}	4	5	0	0	7%	$\nu_{\rm OC}$	1	5	0	0
988	18%	δ_{CH}	3	4	9	0	14%	δοσ	3	4	5	0
	12%	δοσ	1	5	4	Õ	12%	Vcc	3	4	0	Ő
	9%	γ_{c-c}	2	3	0	0	6%	ν _{oc}	1	5	0	0
968	53%	Voc	1	5	0	0	10%	Vcc	3	4	1	0
000	6%	Voc	1	2	0	0	5%	δου	4	5	10	0
	5%	δou	3	4	g	0	070	UCH	1	0	10	0
755	36%	δοσ	2	1	5	0	23%	Voc	1	5	0	0
100	12%	δαα	1	5	4	0	<u> </u>	δaa	1	2	3	0
	6%	δαυ	3	2	8	0	070	000	1	2	0	0
592	59%	δonu	6	7	11	0	14%	δαα	4	3	6	0
002	11%	δαα	2	3	6	0	6%	Vaa	3	4	0	0
544	42%	Vaa	3	6	0	0	11%	δaa	2	3	4	0
110	8%	δaa	1	2	3	0	6%	v	6	7	8	0
	070 c07	UCC	1	2	0	0	070	VC≡N	0	'	0	0
1.00	6%	$v_{C=C}$	2	3	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	c	2	0	~	0
168	47%	$\delta_{\rm CNH}$	1	2	0	0	25%	$\delta_{\rm CC}$	2	3	6	0
	25%	$\delta_{ m CC}$	4	3	6	0						
Out-of-plane modes	2201						2001					
887	33%	$\gamma_{ m CCCH}$	6	3	2	8	29%	$\gamma_{ m CCCH}$	4	3	2	8
	14%	$\gamma_{ m COCH}$	5	1	2	8	11%	$\gamma_{ m CCCH}$	3	4	5	10
222	7%	$\gamma_{ m HCCH}$	9	4	5	10	1.00		0	0		0
882	36%	$\gamma_{ m HCCH}$	9	4	5	10	16%	$\gamma_{ m CCCH}$	6	3	4	9
	12%	$\gamma_{ m OCCH}$	1	5	4	9	10%	$\gamma_{ m CCCH}$	2	3	4	9
222	9%	$\gamma_{ m CCCH}$	3	4	5	10	5%	$\gamma_{ m COCH}$	2	1	5	10
808	20%	$\gamma_{ m CCCH}$	3	4	5	10	19%	$\gamma_{ m OCCH}$	1	5	4	9
	17%	$\gamma_{ m CCCH}$	2	3	4	9	15%	$\gamma_{ m CCCH}$	6	3	4	9
2 22	10%	$\gamma_{ m COCH}$	2	1	5	10	8%	$\gamma_{ m CCCH}$	6	3	2	8
628	35%	$\gamma_{ m CNH}$	3	6	1	11	9%	$\gamma_{ m CCCC}$	1	2	3	4
	8%	$\gamma_{ m CCCH}$	6	3	4	9	7%	$\gamma_{ m CCCC}$	5	4	3	6
	6%	$\gamma_{ m CCCC}$	2	3	4	5	5%	$\gamma_{ m CCCH}$	4	3	2	8
627	91%	$\gamma_{ m CNH}$	3	6	7	11	~ ~ ~ ~ ~			_		
561	26%	$\gamma_{ m COCC}$	2	1	5	4	25%	$\gamma_{ m OCCC}$	1	5	4	3
	12%	$\gamma_{\rm CCCC}$	2	3	4	5	7%	$\gamma_{\rm CCCC}$	5	4	3	6
	7%	$\gamma_{ m COCC}$	5	1	2	3						
489	21%	$\gamma_{\rm CCNH}$	3	6	7	11	15%	$\gamma_{ m OCCC}$	1	2	3	6
	10%	$\gamma_{\rm COCC}$	5	1	2	3	9%	$\gamma_{ m CCN}$	0	3	6	7
	8%	$\gamma_{\rm OCCC}$	1	2	3	4	6%	$\gamma_{\rm COCH}$	2	1	5	10
209	68%	$\gamma_{\rm CCNH}$	3	6	7	11	10%	$\gamma_{\rm CCCC}$	5	4	3	6
	9%	$\gamma_{ m OCCC}$	1	2	3	6			~	_	_	
83	75%	$\gamma_{ m CCN}$	0	3	6	7	18%	$\gamma_{\rm CCNH}$	3	6	7	11

^aOnly contributions greater than 5% were taken into account; ^bSee Scheme S1 for atom numbering; ^c ν : stretching; δ : in-plane bending modes; γ : out-of-plane bending modes.

		$2\mathrm{CFH}$	+				$3\mathrm{CFH}$	÷	
Non scaled frequencies	Scaled	IR int.	Ram. Activ	Ram. Int.	Non scaled frequencies	Scaled	IR int.	Ram. Activ	Rama. Int
3684	3475	1033.74	113.26	8.01	3746	3486	1134.57	23.84	1.67
3368	3176	19.90	119.64	11.27	3318	3147	15.69	128.17	12.42
3319	3130	21.83	86.36	8.50	3291	3120	24.18	70.30	6.99
3311	3122	7.58	77.56	7.69	3291	3120	20.80	36.99	3.68
2241	2232	561.27	211.70	49.92	2355	2218	480.58	199.51	47.69
1603	1546	23.47	10.91	5.35	1585	1591	29.48	14.08	6.56
1493	1437	176.46	57.80	32.29	1540	1531	137.49	30.70	15.34
1390	1337	57.17	21.18	13.37	1372	1368	2.30	7.93	4.82
1259	1211	12.82	1.50	1.11	1344	1287	3.52	2.89	1.94
1244	1190	8.04	8.70	6.65	1268	1222	3.67	3.41	2.49
1186	1135	18.92	4.76	3.92	1228	1140	53.21	9.86	8.06
1105	1062	19.17	17.46	15.95	1135	1099	24.88	3.03	2.63
1018	975	38.12	1.04	1.08	1033	988	11.48	8.35	8.51
945	918	29.65	9.10	10.36	979	968	16.86	16.13	16.95
925	875	0.15	0.38	0.46	887	887	40.90	0.07	0.09
892	872	6.83	5.88	7.21	881	882	5.32	0.04	0.05
878	839	1.05	0.08	0.10	851	808	45.84	2.03	2.79
786	740	51.01	0.80	1.25	770	755	17.87	1.42	2.15
655	630	33.48	1.09	2.15	620	628	68.39	0.52	1.02
616	590	35.25	0.87	1.88	608	627	109.67	0.27	0.53
596	575	12.19	0.38	0.86	593	592	0.19	1.61	3.46
569	555	3.54	24.90	58.72	579	561	20.80	5.03	11.68
561	542	64.50	0.78	1.89	569	544	17.59	11.35	27.57
518	505	2.84	1.41	3.82	521	489	14.57	0.48	1.38
294	279	483.37	48.59	324.98	192	209	91.94	0.15	1.56
192	185	6.11	3.99	52.66	166	168	1.96	4.58	71.21
186	179	25.45	0.81	11.21	149	83	5.48	0.66	36.22

49774.5525 0.0001 5.8367 49774.7377 0.0000 0.0299 45981.5151 0.0000 0.0297	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49774.5525 0.0001 5.8367 49774.525 0.0000 0.0299 49774.7377 0.0000 0.0297 45982.5892 0.0000 0.0297 45982.6776 0.0002 5.3944 45982.6721 0.0002 5.3944 45982.6721 0.0002 5.3944 45983.7628 0.0002 5.7963 45983.7628 0.0002 5.7963 45983.7628 0.0000 0.02342 45983.7628 0.0000 0.0342 45983.7628 0.0000 0.0342 45772.4301 0.0000 0.0342 42772.4352 0.0000 0.0342 42772.4352 0.0000 0.0342 39910.9233 0.0000 0.0396 39910.9278 0.0001 5.2083 39910.9789 0.0001 5.2083 39911.9019 0.0001 5.2083
$13 \leftarrow 13$ 4598	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$114 \leftarrow 13_{113} \qquad 13 \leftarrow 13 \qquad 4598 \\ 113 \leftarrow 14 \qquad 4598 \\ 15 \leftarrow 14 \qquad 4598 \\ 13 \leftarrow 12 \qquad 4598 \\ 14 \leftarrow 13 \qquad 4598 \\ 14 \leftarrow 13 \qquad 4598 \\ 14 \leftarrow 13 \qquad 4598 \\ 12 \leftarrow 12 \qquad 12 \leftarrow 12 \qquad 4277 \\ 12 \leftarrow 11 \qquad 4277 \\ 13 \leftarrow 12_{112} \qquad 12 \leftarrow 11 \qquad 4277 \\ 13 \leftarrow 12 \leftarrow 12 \leftarrow 11 \qquad 4277 \\ 13 \leftarrow 12 \leftarrow 11 \qquad 4277 \\ 13 \leftarrow 12 \leftarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c} 001\\ 3817\\ 3658\\ 5534\\ 5534\\ 0409\\ 0349\\ 0349\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.000 0.00 0.0001 5.38 0.001 5.38	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 43124.9687 \\ 43124.9749 \end{array} $	43125.0350 43125.0350 43125.1028 43053.1158 43053.1158	43124.9791 43125.0350 43125.1028 6 43053.1158 6 43054.1685 6 43054.1714 6 43055.1863 6	$\begin{array}{c} 4.3124.9791\\ 4.3125.0350\\ 4.3125.1028\\ 4.3053.1158\\ 4.3054.10900\\ 4.3054.1685\\ 4.3054.1685\\ 4.3054.1685\\ 4.3055.1685\\ 4.3055.1863\\ 4.6199.8170\\ 46199.8925\\ 46199.8925\\ 46199.8925\\ 46199.8955\\ 46199.8955\\ 46199.8955\\ 46199.8955\\ 46199.8955\\ 46199.9297\\ 66199.8955\\ 46199.9297\\ 66199.8955\\ 66199.8955\\ 66199.8955\\ 66199.8955\\ 66199.8955\\ 66199.8955\\ 66199.8955\\ 66199.8955\\ 66190.9476\\ 66190.8955\\ 66100.9476\\ 66100.9476\\ 66100.8955\\ 66100.9476$
$11 \leftarrow 12$ $11 \leftarrow 10$	$\begin{array}{c} 13 \leftarrow 12 \\ 12 \leftarrow 11 \\ 12 \leftarrow 12 \\ 12 \leftarrow 12 \\ 12 \leftarrow 12 \\ 12 \\$	$\begin{array}{c} 13 \leftarrow 12 \\ 12 \leftarrow 11 \\ 12 \leftarrow 12 \\ 12 \leftarrow 12 \\ 12 \leftarrow 12 \\ 14 \leftarrow 13 \\ 12 \leftarrow 11 \\ 13 \leftarrow 11 \\ 13 \leftarrow 11 \\ 13 \leftarrow 11 \\ 13 \leftarrow 11 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0	2	0 1 2 0 1 2 0 1 3 0

Est. Err¹: Estimated error (in MHz) for calculated frequency from observed one; $Int.^2$: intensity of the line (in $\times 10^{-3} nm^2 MHz$).

Table S9 $- 2 \text{CNFH}^+$ selected strongest line transitions and the corresponding hyperfine splitting components for T = 10 K.

S9

¥.
0
\vdash
\mathbf{for}
tts
ıen
ГOd
om
ට භ
tin
olit
e s]
fine
per
hyJ
0 <u>0</u>
libi
201
lsə.
OLI
le C
l tł
and
US 5
tio
nsi
tra
ne 1
f li
sest
guo
str
eq
scte
sele
+
Ε
CN
ŝ
- 0
SI
le
ab.
Ĥ

J_k , k , $\leftarrow J_k$, k ,	$F^{'} \leftarrow F^{'}$	Vcal	$Est.Err^{1}$	$\mathrm{Int.}^2$	Transiti	on	Vcal	$Est.Err^{1}$	Int. ²
	$12 \leftarrow 12$	45437.7268	0.0001	0.2606		$13 \leftarrow 13$	48678.7108	0.001	0.2216
	$12 \leftarrow 13$	45437.9860	0.0000	0.0004		$13 \leftarrow 14$	48679.0118	0.0000	0.0003
13 17	$12 \leftarrow 11$	45438.0077	0.0001	40.5230	14, 12	$13 \leftarrow 12$	48679.0350	0.0001	40.2290
$1112 \rightarrow 211c$	$14 \leftarrow 13$	45438.0092	0.001	47.3090	$14113 \leftarrow 10112$	$15 \leftarrow 14$	48679.0365	0.0001	46.4430
	$13 \leftarrow 12$	45438.0510	0.0001	43.7860		$14 \leftarrow 13$	48679.0813	0.0001	43.2250
	$13 \leftarrow 13$	45438.3102	0.0001	0.2606		$14 \leftarrow 14$	48679.3823	0.0001	0.2217
	11 - 11	49141 7955	0 0001	0 2006		$13 \leftarrow 13$	7173 7173	0 000	0.9180
		40140.0100		100000				0.0000	6017.0
	$11 \leftarrow 12$	42142.0100	0.000	GUUU.U		$13 \leftarrow 14$	44980.0577	0.000	0.0003
$12, \leftarrow 11,$	$11 \leftarrow 10$	42142.0368	0.0001	39.3890	$14, \leftarrow 13,$	$15 \leftarrow 14$	44980.7261	0.0002	45.8610
	$13 \leftarrow 12$	42142.0383	0.0001	46.5910	171 14 10 10 13	$13 \leftarrow 12$	44980.7302	0.0002	39.7240
	$12 \leftarrow 11$	42142.0764	0.0001	42.8400		$14 \leftarrow 13$	44980.7416	0.0002	42.6830
	$12 \leftarrow 12$	42142.2975	0.0001	0.2996		$14 \leftarrow 14$	44981.6820	0.0002	0.2189
	$13 \leftarrow 13$	45215.0458	0.0002	0.2222		$12 \leftarrow 12$	41836.9572	0.0002	0.2509
	$13 \leftarrow 14$	45215.9426	0.0000	0.0003		$12 \leftarrow 13$	41837.8811	0.0000	0.0004
	15 - 17	15916 0088	0,000	16 5580		$1A \leftarrow 13$	11837 0536	0,000	AR 5510
$14_{014} \leftarrow 13_{013}$		40710.0000	2000.0	40.9960	$13_{113} \leftarrow 12_{112}$		10000 1001F	2000.0	40.0010 010006
	$13 \leftarrow 12$	40210.0118	0.0002	40.3280		$11 \rightarrow 21$	41031.9303	0.0002	0010.85
	$14 \leftarrow 13$	45216.0363	0.0002	43.3320		$13 \leftarrow 12$	41837.9701	0.0002	42.1580
	$14 \leftarrow 14$	45216.9331	0.0002	0.2222		$13 \leftarrow 13$	41838.8940	0.0002	0.2509
	$12 \leftarrow 12$	42137.9563	0.0002	0.2562		$14 \leftarrow 14$	48295.8382	0.0002	0.1892
	$12 \leftarrow 13$	42138.8210	0.0000	0.0004		$14 \leftarrow 15$	48296.7626	0.0000	0.0002
	$14 \leftarrow 13$	42138 8901	0.0002	46.5040		$16 \leftarrow 15$	48296 8259	0.0002	45.3120
$13_{0\ 13} \leftarrow 12_{0\ 12}$	$12 \leftarrow 11$	$42138\ 8033$	0 0002	39 8330	$15_{015} \leftarrow 14_{014}$	$14 \leftarrow 13$	48296 8287	0.0002	39 6310
	$12 \leftarrow 19$	12138 0223	0.000 0	43 0400		$15 \leftarrow 14$	18206 8/0/	0.000 20000	0100.00 A9 3770
	$13 \leftarrow 13$	42139.7869	0.0002	0.2562		$15 \leftarrow 15$	48297.7737	0.0002	0.1892
	$13 \leftarrow 13$	48678.7108	0.0001	0.2216		$11 \leftarrow 11$	39062.1142	0.0001	0.2897
	$13 \leftarrow 14$	48679.0118	0.0000	0.0003		$11 \leftarrow 12$	39062.9416	0.0000	0.0005
11 12	$13 \leftarrow 12$	48679.0350	0.0001	40.2290	11 , 11	$13 \leftarrow 12$	39063.0139	0.0001	45.0510
$14113 \leftarrow 10112$	$15 \leftarrow 14$	48679.0365	0.0001	46.4430		$11 \leftarrow 10$	39063.0171	0.0001	38.0870
	$14 \leftarrow 13$	48679.0813	0.0001	43.2250		$12 \leftarrow 11$	39063.0511	0.0001	41.4250
	$14 \leftarrow 14$	48679.3823	0.0001	0.2217		$12 \leftarrow 12$	39063.8785	0.0001	0.2897

 $Est.Err^{1}: Estimated error (in MHz) for calculated frequency from observed one; Int.^{2}: intensity of the line (in \times 10^{-3} nm^{2} MHz).$

S10