## Exploring room-temperature ferromagnetism in WXBC (X=W, Mn, Fe) monolayers

Yusuf Zuntu Abdullahi<sup>a,</sup> Sohail Ahmad<sup>b</sup>, Fatih Ersan<sup>c</sup>,

<sup>b</sup>Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339 Kaduna State, Nigeria.

<sup>b</sup> Department of Physics, College of Science, P O Box 9004, King Khalid University, Abha, Saudi Arabia. <sup>c</sup>Department of Physics, Adnan Menderes University, Avdın 09010, Turkey.

## Linear response approach for Hubbard *U* parameter calculation:

We employed linear response approach proposed by Cococcioni *et al.* [1], as implemented in the Quantum Espresso package [2], to evaluate the *U* parameter for WXBC (X = W, Mn, Fe) monolayers. As illustrated in Fig. S1, the non-interacting and interacting inverse matrix is the gradients of the bare and self-consistent regression response functions. The calculated  $U_{eff}$  values for WXBC monolayers are displayed in Fig. S1.



**Figure S1**: Linear response of d orbital occupations as a function of potential shift  $\alpha$ . The curves depicted by the squares and circles lines are labelled bare and interacting. The inverse response

functions are deduced numerically by calculating the slope of the curves.  $\varkappa_0$  follows from the slope of curve bare, whereas  $\varkappa$  from the slope of curve interacting.



**Figure S2**: Top and side view  $4 \times 4 \times 1$  supercell of WXBC (X = W, Mn, Fe) monolayers under a Nose–Hoover thermostat at 300K with a time step of 3.0 fs.



**Figure S3**. Top and side view views (a–c) of geometric structures of an (a) FM and two different (b) AFM1 (c) AFM2 states for WXBC (X = W, Mn, Fe) monolayers. Red and blue color denote the spin up and spin down respectively.



Figure S4. Total density of states (TDOS) for WXBC (X = W, Mn, Fe) monolayers.



Figure S5. (a) Magnetic susceptibility and (b) Specific heat as a function of temperature for the  $W_2BC$  monolayer.



**Figure S6.** Charge density difference for atm@WXBC monolayers. Here, atm means adsorbed Li, Na and K atoms. The charge density difference maximum iso-surface values are approximately  $0.036/0.130/0.130 e \text{ Å}^{-3}$  for W2BC with adsorbed Li/Na/Ka systems, while those of WMnBC and WFeBC with adsorbed Li/Na/K cases are  $0.037/0.041/0.037 e \text{ Å}^{-3}$  and  $0.047/0.044/0.050 e \text{ Å}^{-3}$ , respectively.



**Figure S7.** TDOS for atm@WXBC (X = W, Mn, Fe) structures. Here, atm means adsorbed Li, Na and K atoms.

## **Supporting Tables**

**Table S1.** Cohesive energy,  $E_{coh}$ , formation energy,  $E_{FE}$  (in eV per atom), averaged bond lengths  $L_{xy}/L_z$  (Å) in the x - y plane and z axis, in-plane stiffness Y (N/m), Poisson's ratio,  $\nu$ , magnetic ordering, M and total magnetic moment,  $m_T$  (in  $\mu_B$  per unit cell) for a series of WXBC (X = W, Mn, Fe) monolayers are listed. m is the magnetic moment of each magnetic ions in in  $\mu_B$ .

| System               | W <sub>2</sub> BC | WMnBC         | WFeBC         |
|----------------------|-------------------|---------------|---------------|
| $E_{\rm coh}$        | 7.98              | 6.69          | 6.86          |
| $E_{\rm FE}$         | -0.12             | -0.03         | 0.03          |
| Y(a/b)               | 210.63/210.63     | 153.56/153.70 | 208.93/216.09 |
| $\nu (a/b)$          | 0.504/0.504       | 0.349/0.349   | 0.280/0.290   |
| М                    | NM                | FM            | FM            |
| m <sub>T</sub> (PBE) | 0                 | 2.34          | 1.59          |
| $m_{\rm T}$ (PBE+U)  | 1.15              | 2.28          | 1.72          |
| m (PBE+U)            | W(1.13, 0.33)     | W(0.65),      | W(0.50),      |
|                      |                   | Mn(1.99)      | Fe(1.51)      |

| System            | FM | AFM1  | AFM2  |
|-------------------|----|-------|-------|
| W <sub>2</sub> BC | 0  | 0.192 | 0.104 |
| WMnBC             | 0  | 0.465 | 0.223 |
| WFeBC             | 0  | 0.518 | 0.208 |

**Table S2.** Relative energies (eV) between FM and AFM for WXBC (X = W, Mn, Fe) monolayers.

**Table S3 (a)**: MAE Per unit cell in  $\mu$ eV for W<sub>2</sub>BC monolayer. The easy axis (EA) is out of the plane [001] and FM as the ground state.

| MAE             | EA   |
|-----------------|------|
| E(100) – E(001) | 9710 |
| E(010) – E(001) | 9710 |
| E(110) – E(001) | 8280 |
| E(111) – E(001) | 5410 |

**Table S3 (b)**: MAE Per unit cell in  $\mu$ eV for WMnBC monolayer. The easy axis (EA) is within the basal plane [100] and FM as the ground state.

| MAE             | EA   |
|-----------------|------|
| E(001) – E(100) | 1980 |
| E(010) – E(100) | 0    |
| E(110) – E(100) | 1260 |
| E(111) – E(100) | 1390 |

**Table S3 (c)**: MAE Per unit cell in  $\mu$ eV for WFeBC monolayer. The easy axis (EA) is within the basal plane [100] and FM as the ground state.

| MAE             | EA  |
|-----------------|-----|
| E(001) – E(100) | 50  |
| E(010) – E(100) | 0   |
| E(110) – E(100) | 160 |
| E(111) – E(100) | 150 |

| Electric field<br>(eV/Å) | E(100)<br>- E(001) | E(010)<br>- E(001) | E(110)<br>- E(001) | E(111)<br>- E(001) | EA  |
|--------------------------|--------------------|--------------------|--------------------|--------------------|-----|
| 0                        | 9710               | 9710               | 8280               | 5410               | 001 |
| 0.2                      | 7070               | 7070               | 8940               | 5730               | 001 |
| 0.4                      | 7090               | 7080               | 9100               | 6110               | 001 |
| 0.6                      | 7010               | 7010               | 8520               | 5590               | 001 |
| 0.8                      | 7390               | 7390               | 9050               | 6420               | 001 |
| 1.0                      | 5330               | 5200               | 5090               | 4660               | 001 |

**Table S4 (a)**: MAE Per unit cell in  $\mu$ eV for W<sub>2</sub>BC monolayer under electric field. The easy axis (EA) is out of the plane [001] and FM as the ground state.

**Table S4 (b)**: MAE Per unit cell in  $\mu$ eV for W<sub>2</sub>BC monolayer under Biaxial Strain. The easy axis (EA) is out of the plane [001] and FM as the ground state.

| Strain (%) | E(100)<br>- E(001) | E(010)<br>- E(001) | E(110)<br>- E(001) | E(111)<br>- E(001) | EA  |
|------------|--------------------|--------------------|--------------------|--------------------|-----|
| -3         | 12500              | 12510              | 12510              | 8920               | 001 |
| 0          | 9710               | 9710               | 8280               | 5410               | 001 |
| 3          | 1050               | 1050               | 1570               | 1680               | 001 |
| 6          | 11760              | 11760              | 12110              | 7940               | 001 |

**Table S5:** Relative energies in eV between FM and AFM for WXBC (X = W, Mn, Fe) monolayers with adsorbed Li, Na and K atoms.

| Sheet             | Atoms | $E_{\rm AFM} - E_{\rm FM}$ | Magnetic |
|-------------------|-------|----------------------------|----------|
|                   |       |                            | Ordering |
|                   | Li    | 8.253                      | FM       |
| W <sub>2</sub> BC | Na    | 8.348                      | FM       |
| 2                 | K     | 8.203                      | FM       |
|                   | Li    | 6.083                      | FM       |
| WMnBC             | Na    | 5.919                      | FM       |
|                   | K     | 5.996                      | FM       |
|                   | Li    | 5.927                      | FM       |

|       | Na | 5.977 | FM |
|-------|----|-------|----|
| WFeBC | K  | 6.099 | FM |

**Table S6.** Stable Ads. Site for Li, Na, K atoms. The adsorption energy  $(E_{ad})$  and the adsorption height (*h*) i.e the distance between the  $W_2BC$ , WMnBC, and WFeBC sheets and the adatoms (adsorbed Li, Na, K atoms).  $M_{cell}$  and EC denote the magnetic moment and electronic character of the atm – WXBC (X = W, Mn, Fe) systems with their corresponding magnetic ground state ( $GS_M$ ). Charge transfer into the WXBC is denoted by Q. The electronic character (EC) of the atm – WXBC structures are all Metallic.

| System            | Adsorbate | Ads.            | $E_{ads}$ | h    | Q             | GS <sub>M</sub> | $M_{\rm cell}$  |
|-------------------|-----------|-----------------|-----------|------|---------------|-----------------|-----------------|
|                   |           |                 | (eV)      | (Å)  | ( <i>e</i> -) |                 | $(\mu_{\rm B})$ |
|                   | Li        | T <sub>B</sub>  | 8.64      | 2.03 | 0.84          | FM              | 0.43            |
| W <sub>2</sub> BC | Na        | T <sub>B</sub>  | 8.73      | 2.40 | 0.73          | FM              | 0.36            |
| _                 | K         | T <sub>B</sub>  | 8.98      | 2.70 | 0.75          | FM              | 0.71            |
|                   | Li        | T <sub>H</sub>  | 6.71      | 2.29 | 0.86          | FM              | 8.13            |
| WMnBC             | Na        | T <sub>H</sub>  | 6.60      | 2.65 | 0.76          | FM              | 8.63            |
|                   | K         | T <sub>Mn</sub> | 7.00      | 2.85 | 0.78          | FM              | 8.00            |
|                   | Li        | T <sub>H</sub>  | 6.82      | 2.31 | 0.86          | FM              | 6.71            |
| WFeBC             | Na        | T <sub>H</sub>  | 6.76      | 2.63 | 0.77          | FM              | 6.78            |
|                   | K         | T <sub>Fe</sub> | 7.06      | 2.85 | 0.76          | FM              | 7.22            |

## References

- [1] M. Cococcioni, S. De Gironcoli, Phys. Rev. B., 71 (2005) 035105.
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys. Condens. Matter., 21 (2009) 395502.