Supporting Information

BF₃·Et₂O-mediated annulation of α-keto acids with aliphatic ketones for the synthesis of γ-hydroxy-butenolides and γ- alkylidenebutenolides

Zhenfeng Cheng,^a Qingyun Gu,^a Yushan Xie,^a Yanan Zhang^a and Xiaobao Zeng*^a

School of Pharmacy, Nantong University, Nantong 226001, P.R. China.

List

1.	General InformationS2
2.	Preparation and characterizations of compounds 3aa-p and 4aa-iS2-12
3.	X-ray Crystallographic Data of 3afS12-20
4.	References
5.	¹ H NMR and ¹³ C NMR spectra of compounds 3aa-p and 4aa-iS21-45

1. General Information

All melting points were determined on a Yanaco melting point apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a Nicolet FT-IR 5DX spectrometer. ¹H-NMR (400 MHz) and ¹³C-NMR (100 MHz) spectra were recorded in CDCl₃. TMS was used as an internal reference and *J* values are given in Hz. HR-MS were obtained on a Bruker microTOF-Q II spectrometer. PE is petroleum ether (60–90 °C). All α -keto acids^[1] and ketones are known compounds, which were purchased directly or were prepared according to the reported procedures.

2. Preparation and characterizations of compounds 3aa-p and 4aa-i

7a-hydroxy-3-phenyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one **Synthesis** of (3aa). To a stirred mixture of 2-oxo-2-phenylacetic acid (1a, 75 mg, 0.5 mmol) and cyclohexanone (2a, 98 mg, 1 mmol) in toluene (2 mL) was added BF₃·Et₂O (0.2 equiv., 14 mg) at room temperature. After the reaction system was heated at 40 °C for 1 h, it was cooled down to room temperature again and was quenched by adding H₂O (15 mL). The resultant mixture was then extracted with CH_2Cl_2 (3 × 15 mL). The combined organic layers were washed with brine $(2 \times 15 \text{ mL})$ and dried over MgSO₄. The solvent was removed by vacuum and the residue was purified by flash chromatography (silica gel, 25% EtOAc in PE) to give 99 mg (86%) of the desired product **3aa** as colorless solid, mp 102–104 °C. IR (KBr) v 3414, 1730 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.35 (m, 5H), 4.31 (brs, 1H), 2.96 (d, J = 13.4 Hz, 1H), 2.53-2.45 (m, 2H), 2.00-1.97 (m, 1H), 1.81-1.78 (m, 2H), 1.62-1.57 (m, 1H), 1.36-1.28 (m, 1H);¹³C NMR (100 MHz, CDCl₃) δ 170.9, 162.2, 129.2, 128.9, 128.6, 128.5, 124.4, 103.2, 38.3, 26.9, 25.6, 22.0; HRMS m/z (ESI) calcd for $C_{14}H_{14}O_3$, (M+H)⁺ 231.1016; found 231.1014.

The products **3ab-p** were prepared following the similar procedure above.

7a-hydroxy-7-methyl-3-phenyl-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3ab).** 87 mg (71%), white solid, mp 144–146 °C. IR (KBr) *v* 3362, 1748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.35 (m, 5H), 3.64 (s, 1H), 2.98-2.93 (m, 1H), 2.46 (td, *J* = 13.5, 5.7 Hz, 1H), 1.98-1.95 (m, 1H), 1.80-1.74 (m, 1H), 1.70-1.67 (m, 1H), 1.56 (ddd, *J* = 26.1, 13.1, 3.6 Hz, 1H), 1.43-1.32(m, 1H), 1.18 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 162.8, 129.3, 128.9, 128.6, 128.4, 124.2, 104.4, 42.7, 30.2, 26.4, 25.3, 13.8. HRMS *m/z* (ESI) calcd for C₁₅H₁₆O₃, (M+H)⁺ 245.1172; found 245.1170.

3-Phenyl-6-methyl-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (**3ac).** 104 mg (85%), yellow solid, mp 108–110 °C. IR (KBr) v 3364, 1746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.34 (m, 5H), 4.87 (brs, 1H), 2.93-2.89 (m, 1H), 2.58-2.50 (m, 1H), 2.41-2.38 (m, 1H), 2.07-1.98 (m, 1H), 1.93-1.89 (m, 1H), 1.27-1.20 (m, 1H), 1.05-0.98 (m, 1H), 0.93 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 162.2, 129.2, 128.9, 128.5, 128.4, 124.2, 103.6, 45.7, 35.1, 28.8, 25.0,

20.9; HRMS m/z (ESI) calcd for C₁₅H₁₆O₃, (M+H)⁺ 245.1172; found 245.1172.

3-Phenyl-7a-hydroxy-7,7a-dihydro-4*H***-furo**[**3,2-c**]**pyran-2(6***H***)-one (3ad).** 70 mg (60%), colorless oil. IR (KBr) v 3421, 1765 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 5H), 4.75 (d, J = 13.2 Hz, 1H), 4.41-4.38 (m, 2H), 3.98 (dd, J = 11.7, 5.0 Hz, 1H), 3.86-3.80 (m, 1H), 2.37 (d, J = 13.4 Hz, 1H), 2.08-2.00 (m, 1H); ¹³C

NMR (100 MHz, CDCl₃) δ 170.3, 154.8, 129.5, 128.9, 128.7, 128.1, 126.1, 100.9, 64.6, 62.7, 40.0; HRMS *m*/*z* (ESI) calcd for C₁₃H₁₂O₄, (M+H)⁺ 233.0808; found 233.0808.

3-Phenyl-8a-hydroxy-4,5,6,7,8,8a-hexahydro-2*H***-cyclohepta[b]furan-2-one** (**3ae).** 96 mg (79%), white solid, mp 84–86 °C. IR (KBr) *v* 3306, 1744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.34 (m, 5H), 4.55 (brs, 1H), 2.82-2.64 (m, 2H), 2.34 (ddd, *J* = 14.2, 6.1, 2.7 Hz, 1H), 1.96-1.55 (m, 6H), 1.45-1.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 164.2, 129.6, 128.9, 128.5, 128.3, 127.1, 107.7, 38.0, 28.5, 26.6, 25.6, 23.5. HRMS *m/z* (ESI) calcd for C₁₅H₁₆O₃, (M+H)⁺ 245.1172; found 245.1171.

3-Phenyl-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2,4-dione (3af). 71 mg (58%), white solid, mp 172–174 °C. IR (KBr) v 3341, 1764, 1715 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.79 (m, 2H), 7.47-7.34 (m, 3H), 4.09 (s, 1H), 2.78-2.68 (m, 1H), 2.68-2.59 (m, 1H), 2.43-2.34 (m, 1H), 2.20-2.01 (m, 2H), 2.00-1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 169.0, 151.3, 130.9, 130.3, 130.2, 128.2, 127.3, 105.4, 42.8, 36.0, 19.6. HRMS *m/z* (ESI) calcd for C₁₄H₁₂O₄, (M+H)⁺ 245.0808; found 245.0808.

3-Phenyl-6,6-dimethyl-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2,4-dione (**3ag).** 76 mg (56%), white solid, mp 138–140 °C. IR (KBr) *v* 3326, 1763, 1711 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.80 (m, 2H), 7.45-7.36 (m, 3H), 4.18 (s, 1H), 2.60 (dd, *J* = 14.9, 1.7 Hz, 1H), 2.46 (dd, *J* = 14.2, 1.7 Hz, 1H), 2.35 (d, *J* = 14.9 Hz, 1H), 2.01 (d, *J* = 14.2 Hz, 1H), 1.22 (s, 3H), 1.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 169.0, 150.7, 131.0, 130.2, 130.1, 128.2, 127.4, 105.4, 56.4, 48.1, 32.8, 32.1, 28.3. HRMS *m/z* (ESI) calcd for C₁₆H₁₆O₄, (M + H)⁺ 273.1121; found 273.1121.

3-Phenyl-4-methyl-5-hydroxyfuran-2(5*H***)-one (3ah).** 56 mg (59%), white solid, mp 91–93 °C. IR (KBr) *v* 3362, 2953, 1731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.75 (m, 2H), 7.40-7.33 (m, 3H), 7.30 (s, 1H), 4.41 (s, 1H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 146.4, 132.5, 129.8, 128.6 (2C), 127.4, 103.7, 24.7. HRMS *m/z* (ESI) calcd for C₁₁H₁₀O₃, (M + H)⁺ 191.0703; found 191.0704.

3-(Naphthalen-2-yl)-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3ai).** 119 mg (85%), white solid, mp 135–137 °C. IR (KBr) *v* 3399, 1750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.78-7.73 (m, 3H), 7.49-7.41 (m, 3H), 4.70 (s, 1H), 2.98 (d, *J* = 13.7 Hz, 1H), 2.60-2.44 (m, 2H), 2.00-1.89 (m, 1H), 1.82-1.75 (m, 2H), 1.63-1.55 (m, 1H), 1.37-1.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 162.7, 133.0, 132.9, 128.6, 128.2, 128.0, 127.6, 126.6 (2C), 126.2, 126.1, 124.3, 103.5, 38.2, 26.9, 25.8, 22.0; HRMS *m*/*z* (ESI) calcd for C₁₈H₁₆O₃, (M+H)⁺ 281.1172; found 281.1170.

3-(3-Methylphenyl)-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3aj).** 96 mg (79%), white solid, mp 104–106 °C. IR (KBr) v 3402, 1743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.24 (m, 2H), 7.20-7.16 (m, 2H), 4.44 (s, 1H), 2.94 (d, *J* = 13.6 Hz, 1H), 2.52-2.45 (m, 2H), 2.35 (s, 3H), 1.99-1.96 (m, 1H), 1.79-1.77 (m, 2H), 1.60-1.55 (m, 1H), 1.33-1.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 162.1, 138.1, 129.5, 129.4, 129.1, 128.3, 126.0, 124.4, 103.3, 38.3, 26.9, 25.6, 22.0, 21.4; HRMS *m/z* (ESI) calcd for C₁₅H₁₆O₃, (M+H)⁺ 245.1172; found 245.1171.

3-(4-Methylphenyl)-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3ak).** 102 mg (84%), white solid, mp 131–133 °C. IR (KBr) *v* 3386, 1754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 4.23 (brs, 1H), 2.95 (d, *J* = 13.7 Hz, 1H), 2.52-2.45 (m, 2H), 2.37 (s, 3H) 1.99-1.96 (m, 1H), 1.81-1.77 (m, 2H), 1.61-1.56 (m, 1H), 1.35-1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 161.5, 138.6, 129.1, 128.8, 126.3, 124.3, 103.2, 38.2, 26.9, 25.6, 22.1, 21.3. HRMS *m/z* (ESI) calcd for C₁₅H₁₆O₃, (M+H)⁺ 245.1172; found 245.1172.

3-(4-Methoxyphenyl)-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3al).** 73 mg (56%), white solid, mp 98–100 °C. IR (KBr) v 3419, 1746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.25 (s, 1H), 3.82 (s, 3H), 2.94 (d, J = 13.6 Hz, 1H), 2.52-2.45 (m, 2H), 1.99-1.96 (m, 1H), 1.79-1.78 (m, 2H), 1.62-1.56 (m, 1H), 1.34-1.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 160.6, 159.7, 130.3, 123.9, 121.6, 113.9, 103.2, 55.3, 38.2, 26.8, 25.6, 22.1; HRMS *m/z* (ESI) calcd for C₁₅H₁₆O₄, (M+H)⁺ 261.1121; found 261.1123.

3-(4-Chlorophenyl)-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one

(3am). 100 mg (76%), white solid, mp 156–158 °C. IR (KBr) v 3375, 1752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 4H), 4.19 (brs, 1H), 2.91 (d, J = 13.3 Hz, 1H), 2.55-2.46 (m, 2H), 2.03-1.99 (m, 1H), 1.82-1.80 (m, 2H), 1.65-1.57 (m, 1H), 1.38-1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 162.7, 134.8, 130.2, 128.7, 127.5, 123.4, 103.4, 38.2, 26.9, 25.7, 22.0; HRMS *m*/*z* (ESI) calcd for C₁₄H₁₃ClO₃, (M+H)⁺ 265.0626; found 265.0624.

3-(4-Bromophenyl)-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3an).** 123 mg (80%), white solid, mp 168–170 °C. IR (KBr) v 3263, 1725 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.30-7.28 (m, 2H), 3.95 (s, 1H), 2.94-2.90 (m, 1H), 2.55-2.46 (m, 2H), 2.04-1.99 (m, 1H), 1.84-1.80 (m, 2H), 1.66-1.58 (m, 1H), 1.38-1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 162.6, 131.7, 130.5, 128.0, 123.5, 123.1, 103.3, 38.3, 26.9, 25.7, 22.0; HRMS *m/z* (ESI) calcd for C₁₄H₁₃BrO₃, (M+H)⁺ 309.0121; found 309.0121.

3-(Thiophen-2-yl)-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3ao).** 85 mg (72%), white solid, mp 70–72 °C. IR (KBr) *v* 3378, 2944, 1731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 3.7 Hz, 1H), 7.39 (d, *J* = 5.1 Hz, 1H), 7.09-7.07 (m, 1H), 3.92 (brs, 1H), 3.28-3.23 (m, 1H), 2.58-2.45 (m, 2H), 2.07-2.02 (m, 1H), 1.85-1.79 (m, 2H), 1.63-1.55 (m, 1H), 1.43-1.33 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 158.5, 130.7, 128.5, 127.3, 126.9, 118.2, 103.3, 38.3, 26.7, 26.2, 22.0; HRMS *m/z* (ESI) calcd for C₁₂H₁₂SO₃, (M+H)⁺ 237.0580; found 237.0586.

3-Methyl-7a-hydroxy-5,6,7,7a-tetrahydrobenzofuran-2(4*H***)-one (3ap). 60 mg (71%), white solid, mp 115–117 °C (lit.^[2] 126–128 °C). ¹H NMR (400 MHz, CDCl₃) \delta 4.71 (brs, 1H), 2.69 (d, J = 13.4 Hz, 1H), 2.45-2.30 (m, 2H), 2.04-2.00 (m, 1H), 1.78-1.73 (m, 5H), 1.53-1.45 (m, 1H), 1.32-1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 173.2, 161.4, 120.8, 103.9, 38.0, 26.6, 25.0, 22.2, 8.0.**

Synthesis of 3-phenyl-5,6-dihydrobenzofuran-2(4*H*)-one (4aa). To a stirred mixture of 2-oxo-2-phenylacetic acid (1a, 75 mg, 0.5 mmol) and cyclohexanone (2a, 98 mg, 1 mmol) in toluene (2 mL) was added BF₃·Et₂O (36 mg, 0.25 mmol) at room temperature. After the reaction system was heated at 70 °C for 4 h, it was cooled down to room temperature again and was quenched by adding H₂O (15 mL). The resultant mixture was then extracted with CH₂Cl₂ (3 × 15 mL). The combined organic layers were washed with brine (2 × 15 mL) and dried over MgSO₄. The solvent was removed by vacuum and the residue was purified by flash chromatography (silica gel, 10% EtOAc in PE) to give 87 mg (82%) of the desired product **4a** as white solid, mp 102–104 °C (lit.^[3] yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.61 (m, 2H), 7.45-7.41 (m, 2H), 7.39-7.32 (m, 1H), 5.93 (t, *J* = 4.7 Hz, 1H), 2.91 (t, *J* = 6.5 Hz, 2H), 2.44 (dd, *J* = 10.9, 5.8 Hz, 2H), 1.92-1.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 149.2, 147.7, 130.0, 128.5, 128.4 (2C), 121.5, 110.8, 24.3, 23.6, 22.7.

The products **4ab-i** were prepared by the similar procedure.

3-(3-Methylphenyl)-5,6-dihydrobenzofuran-2(4*H***)-one (4ab). 86 mg (76%), white solid, mp 80–82 °C. IR (KBr) v 3341, 1765 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 7.48 (s, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.4 Hz, 1H), 5.92 (t, J = 4.7 Hz, 1H), 2.90 (t, J = 6.5 Hz, 2H), 2.44 (dd, J = 10.7, 5.9 Hz, 2H), 2.39 (s, 3H), 1.92–1.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta 169.2, 149.3, 147.6, 138.2, 129.9, 129.3, 129.0, 128.4, 125.5, 121.7, 110.6, 24.3, 23.6, 22.7, 21.5. HRMS** *m/z* **(ESI) calcd for C₁₅H₁₄O₂, (M+H)⁺ 227.1067; found 227.1067.**

3-(4-Methylphenyl)-5,6-dihydrobenzofuran-2(4*H***)-one (4ac). 91 mg (80%), white solid, mp 96–98 °C. IR (KBr)** *v* **3264, 1778 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 7.55 (d,** *J* **= 8.2 Hz, 2H), 7.24 (d,** *J* **= 8.1 Hz, 2H), 5.90 (t,** *J* **= 4.7 Hz, 1H), 2.89 (t,** *J* **= 6.5 Hz, 2H), 2.43 (dd,** *J* **= 10.9, 5.7 Hz, 2H), 2.38 (s, 3H), 1.92-1.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) \delta 169.3, 149.3, 146.9, 138.5, 129.2, 128.3, 127.1, 121.5, 110.3, 24.3, 23.6, 22.7, 21.3. HRMS** *m/z* **(ESI) calcd for C₁₅H₁₄O₂, (M+H)⁺ 227.1067; found 227.1065.**

3-(4-Chlorophenyl)-5,6-dihydrobenzofuran-2(4*H***)-one (4ad). 90 mg (73%), white solid, mp 174–176 °C IR (KBr)** *v* **3410, 1756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 7.63-7.60 (m, 2H), 7.42-7.39 (m, 2H), 5.97 (t,** *J* **= 4.7 Hz, 1H), 2.89 (t,** *J* **= 6.5 Hz, 2H), 2.46 (dd,** *J* **= 10.8, 5.8 Hz, 2H), 1.94-1.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta 168.9, 149.1, 147.9, 134.5, 129.7, 128.8, 128.5, 120.5, 111.4, 24.3, 23.6, 22.6. HRMS** *m/z* **(ESI) calcd for C₁₄H₁₁ClO₂, (M+H)⁺ 247.0520; found 247.0520.**

3-(Thiophen-2-yl)-5,6-dihydrobenzofuran-2(4H)-one (4ae).^[5] 67 mg (61%), yellow solid, mp 56–58 °C. IR (KBr) v 3341, 1769 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 3.5 Hz, 1H), 7.44 (dd, J = 5.0, 0.7 Hz, 1H), 7.15-7.13(m, 1H), 5.93 (t, J

= 4.7 Hz, 1H), 2.95 (t, J = 6.6 Hz, 2H), 2.45 (dd, J = 10.9, 5.9 Hz, 2H), 1.99-1.92 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 149.3, 143.6, 132.2, 127.7, 127.6, 127.2, 116.5, 110.9, 24.2, 23.4, 22.3.

3-Phenyl-6,6-dimethyl-5,6-dihydrobenzofuran-2,4-dione (4af). 71 mg (56%), brown solid, mp 108–110 °C. IR (KBr) *v* 3491, 2965, 1762, 1699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.46-7.44 (m, 3H), 6.04 (s, 1H), 2.70 (s, 2H), 1.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 168.1, 148.2, 135.4, 131.0, 130.3, 128.2, 127.9, 127.7, 120.9, 56.3, 36.5, 30.3. HRMS *m/z* (ESI) calcd for C₁₆H₁₄O₃, (M+H)⁺ 255.1016; found 255.1016.

3-Phenyl-4,5-dihydro-2*H***-cyclopenta[b]furan-2-one (4ag).** 48 mg (48%), brown solid, mp 100–102 °C (lit.^[4] 103 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.87 (m, 2H), 7.44-7.41 (m, 2H), 7.34-7.26 (m, 1H), 5.84 (t, *J* = 3.0 Hz, 1H), 3.09-3.07 (m, 2H), 2.99-2.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 161.6, 153.9, 130.5, 128.7, 128.1, 127.0, 116.3, 112.4, 33.5, 25.4.

3-Phenyl-5-methylene-furan-2(5*H***)-one (4ah).** 39 mg (45%), white solid, mp 68–70 °C; IR (KBr) v 3324, 1763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.89 (m, 2H), 7.51 (s, 1H), 7.45-7.39 (m, 3H), 5.23 (d, *J* = 2.5 Hz, 1H), 4.94 (d, *J* = 2.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 153.4, 134.3, 131.9, 129.9, 128.9, 128.7, 127.2, 97.4. HRMS *m/z* (ESI) calcd for C₁₁H₈O₂, (M+H)⁺ 173.0597; found 173.0597.

(*Z*)-5-ethylidene-4-methyl-3-phenylfuran-2(5H)-one (4ai).^[5] 39 mg (39%), colorless oil; IR (KBr) v 3324, 1763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.46-7.42 (m, 2H), 7.39-7.35 (m, 1H), 5.45 (q, J = 7.4 Hz, 1H), 2.23 (s, 3H), 2.00 (d, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 150.6, 146.6, 129.9, 129.0, 128.5, 128.4, 126.3, 107.7, 11.8, 10.8. HRMS *m/z* (ESI) calcd for C₁₃H₁₂O₂, (M+H)⁺ 201.0910; found 201.0910.

3. X-ray crystallographic data of 3af

Sample preparation: Single crystals of **3af** for X-ray diffraction experiment was obtained by slow evaporation of DCM/n-hexane (1:10, v/v) solution containing **3af**. CCDC 2182801 contain the supplementary crystallographic data for this paper, these data can be obtained free of charge from the Cambridge Crystallographic Data Center.

Figure S1. ORTEP Structure of 3af (CCDC 2182801)

Table 1. Crystal data and structure refinement for 3af (CCDC 2182801).Identification codecd16656

Empirical formula	C14 H12 O4
Formula weight	244.24
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	$a = 9.9657(16) \text{ Å} \qquad \alpha = 90^{\circ}.$
	b = 14.300(2) Å β = 114.989(3)°.
	$c = 9.0367(14) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	1167.3(3) Å ³
Z	4
Density (calculated)	1.390 Mg/m ³
Absorption coefficient	0.102 mm ⁻¹
F(000)	512
Crystal size	0.200 x 0.170 x 0.120 mm ³
Theta range for data collection	2.255 to 25.498°.
Index ranges	-12<=h<=10, -17<=k<=13, -9<=l<=10
Reflections collected	6549
Independent reflections	2170 [R(int) = 0.0336]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6282
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2170 / 0 / 164
Goodness-of-fit on F ²	1.049
Final R indices [I>2sigma(I)]	R1 = 0.0481, $wR2 = 0.1217$
R indices (all data)	R1 = 0.0625, wR2 = 0.1302
Extinction coefficient	n/a
Largest diff. peak and hole	0.704 and -0.152 e.Å ⁻³

Table 2.	Atomic coordinates ($x \ 10^4$) and equi	valent	isotropic d	isplacement
parameter	rs (Å ² x 10 ³) for 3af (CCDC 2182801).	U(eq)	is defined as	one third of
the trace of	f the orthogonalized U ^{ij} tensor.			

	Х	У	Z	U(eq)	
O(1)	5548(2)	-567(1)	3083(2)	49(1)	
O(2)	2246(2)	593(1)	3662(2)	49(1)	
O(3)	3099(2)	2089(1)	3663(2)	47(1)	
O(4)	5011(2)	2986(1)	5217(2)	57(1)	
C(1)	4439(2)	879(1)	3231(2)	34(1)	
C(2)	4575(2)	6(2)	2417(2)	38(1)	
C(3)	3441(2)	-90(2)	686(3)	49(1)	
C(4)	1898(2)	235(2)	406(3)	51(1)	
C(5)	1897(2)	1198(2)	1118(2)	45(1)	
C(6)	2892(2)	1174(1)	2918(2)	38(1)	
C(7)	4565(2)	2286(2)	4439(2)	41(1)	
C(8)	5429(2)	1512(1)	4131(2)	35(1)	
C(9)	7045(2)	1537(1)	4723(2)	36(1)	
C(10)	7931(2)	1912(2)	6249(3)	49(1)	
C(11)	9449(3)	1899(2)	6823(3)	59(1)	
C(12)	10113(2)	1512(2)	5908(3)	59(1)	
C(13)	9249(2)	1154(2)	4394(3)	51(1)	
C(14)	7730(2)	1167(2)	3804(3)	42(1)	

O(1)-C(2)	1.216(2)	
O(2)-C(6)	1.386(2)	
O(2)-H(2)	0.8200	
O(3)-C(7)	1.357(2)	
O(3)-C(6)	1.446(2)	
O(4)-C(7)	1.197(2)	
C(1)-C(8)	1.332(3)	
C(1)-C(2)	1.485(3)	
C(1)-C(6)	1.506(3)	
C(2)-C(3)	1.500(3)	
C(3)-C(4)	1.522(3)	
C(3)-H(3A)	0.9700	
C(3)-H(3B)	0.9700	
C(4)-C(5)	1.519(3)	
C(4)-H(4A)	0.9700	
C(4)-H(4B)	0.9700	
C(5)-C(6)	1.506(3)	
C(5)-H(5A)	0.9700	
C(5)-H(5B)	0.9700	
C(7)-C(8)	1.499(3)	
C(8)-C(9)	1.467(3)	
C(9)-C(14)	1.384(3)	
C(9)-C(10)	1.393(3)	
C(10)-C(11)	1.377(3)	
C(10)-H(10)	0.9300	
C(11)-C(12)	1.374(4)	
C(11)-H(11)	0.9300	
C(12)-C(13)	1.371(3)	
C(12)-H(12)	0.9300	
C(13)-C(14)	1.377(3)	
C(13)-H(13)	0.9300	
C(14)-H(14)	0.9300	
C(6)-O(2)-H(2)	109.5	
C(7)-O(3)-C(6)	109.79(15)	
C(8)-C(1)-C(2)	132.40(18)	

 Table 3.
 Bond lengths [Å] and angles [°] for 3af (CCDC 2182801).

C(8)-C(1)-C(6)	111.10(17)
C(2)-C(1)-C(6)	116.33(16)
O(1)-C(2)-C(1)	122.78(18)
O(1)-C(2)-C(3)	123.14(19)
C(1)-C(2)-C(3)	114.04(17)
C(2)-C(3)-C(4)	114.14(18)
C(2)-C(3)-H(3A)	108.7
C(4)-C(3)-H(3A)	108.7
C(2)-C(3)-H(3B)	108.7
C(4)-C(3)-H(3B)	108.7
H(3A)-C(3)-H(3B)	107.6
C(5)-C(4)-C(3)	112.80(18)
C(5)-C(4)-H(4A)	109.0
C(3)-C(4)-H(4A)	109.0
C(5)-C(4)-H(4B)	109.0
C(3)-C(4)-H(4B)	109.0
H(4A)-C(4)-H(4B)	107.8
C(6)-C(5)-C(4)	108.65(18)
C(6)-C(5)-H(5A)	110.0
C(4)-C(5)-H(5A)	110.0
C(6)-C(5)-H(5B)	110.0
C(4)-C(5)-H(5B)	110.0
H(5A)-C(5)-H(5B)	108.3
O(2)-C(6)-O(3)	108.70(16)
O(2)-C(6)-C(1)	112.92(17)
O(3)-C(6)-C(1)	103.47(15)
O(2)-C(6)-C(5)	107.96(16)
O(3)-C(6)-C(5)	112.46(17)
C(1)-C(6)-C(5)	111.34(16)
O(4)-C(7)-O(3)	121.88(19)
O(4)-C(7)-C(8)	128.90(19)
O(3)-C(7)-C(8)	109.22(17)
C(1)-C(8)-C(9)	130.94(18)
C(1)-C(8)-C(7)	106.20(17)
C(9)-C(8)-C(7)	122.84(17)
C(14)-C(9)-C(10)	118.30(19)
C(14)-C(9)-C(8)	121.04(17)
C(10)-C(9)-C(8)	120.64(18)

C(11)-C(10)-C(9)	120.2(2)
C(11)-C(10)-H(10)	119.9
C(9)-C(10)-H(10)	119.9
C(12)-C(11)-C(10)	120.7(2)
C(12)-C(11)-H(11)	119.6
C(10)-C(11)-H(11)	119.6
C(13)-C(12)-C(11)	119.5(2)
C(13)-C(12)-H(12)	120.3
C(11)-C(12)-H(12)	120.3
C(12)-C(13)-C(14)	120.3(2)
С(12)-С(13)-Н(13)	119.8
С(14)-С(13)-Н(13)	119.8
C(13)-C(14)-C(9)	120.9(2)
C(13)-C(14)-H(14)	119.5
C(9)-C(14)-H(14)	119.5

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters ($Å^2x \ 10^3$) for 3af (CCDC2182801).

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ...

+ 2 h k a* b* U¹²] U^{11} U²² U³³ U²³ U^{13} U^{12} O(1) 44(1) 48(1) 50(1) -5(1)14(1)10(1) O(2) 37(1) 62(1) 51(1) 7(1) 23(1) -1(1)O(3) 36(1) 46(1) 55(1) -7(1)17(1) 7(1) O(4) 57(1) 44(1) 64(1) -13(1) 21(1) 1(1)C(1) 29(1) 40(1) 33(1) 2(1) 14(1) 2(1) C(2) 32(1) 41(1) 42(1) -3(1) -1(1)18(1) C(3) 43(1) 55(1) 44(1)-11(1)13(1) 2(1) C(4) 38(1) 60(1) 43(1) -6(1)7(1) 0(1) C(5) 32(1) 53(1) 45(1) 5(1) 12(1) 5(1) C(6) 32(1) 38(1) 45(1) -2(1)0(1) 16(1) C(7) 42(1) 39(1) 42(1) -1(1)2(1) 16(1) C(8) 34(1) 40(1) 1(1) 1(1) 32(1) 14(1)

C(9)	32(1)	37(1)	36(1)	3(1)	12(1)	-2(1)
C(10)	44(1)	50(1)	46(1)	-7(1)	13(1)	-1(1)
C(11)	41(1)	59(2)	56(1)	-6(1)	1(1)	-7(1)
C(12)	31(1)	57(2)	78(2)	9(1)	12(1)	-2(1)
C(13)	40(1)	54(1)	65(2)	5(1)	27(1)	1(1)
C(14)	36(1)	49(1)	42(1)	1(1)	17(1)	-3(1)

Table 5.	Hydrogen coordinates ((x 10 ⁴)) and isotrop	oic dis	placement

parameters (Å²x 10 ³) for 3af (CCDC 2182801).

	Х	У	Ζ	U(eq)
H(2)	2827	507	4616	73
H(3A)	3388	-742	365	59
H(3B)	3764	268	-16	59
H(4A)	1274	249	-758	61
H(4B)	1474	-212	896	61
H(5A)	2252	1660	583	54
H(5B)	899	1367	946	54
H(10)	7495	2173	6882	59
H(11)	10032	2154	7840	71
H(12)	11139	1494	6313	71
H(13)	9693	900	3763	61
H(14)	7156	924	2774	51

C(8)-C(1)-C(2)-O(1)	44.9(3)
C(6)-C(1)-C(2)-O(1)	-140.4(2)
C(8)-C(1)-C(2)-C(3)	-133.1(2)
C(6)-C(1)-C(2)-C(3)	41.6(2)
O(1)-C(2)-C(3)-C(4)	142.0(2)
C(1)-C(2)-C(3)-C(4)	-39.9(3)
C(2)-C(3)-C(4)-C(5)	49.3(3)
C(3)-C(4)-C(5)-C(6)	-57.6(2)
C(7)-O(3)-C(6)-O(2)	115.56(17)
C(7)-O(3)-C(6)-C(1)	-4.7(2)
C(7)-O(3)-C(6)-C(5)	-124.95(17)
C(8)-C(1)-C(6)-O(2)	-113.82(19)
C(2)-C(1)-C(6)-O(2)	70.3(2)
C(8)-C(1)-C(6)-O(3)	3.5(2)
C(2)-C(1)-C(6)-O(3)	-172.32(16)
C(8)-C(1)-C(6)-C(5)	124.54(19)
C(2)-C(1)-C(6)-C(5)	-51.3(2)
C(4)-C(5)-C(6)-O(2)	-67.0(2)
C(4)-C(5)-C(6)-O(3)	173.11(16)
C(4)-C(5)-C(6)-C(1)	57.5(2)
C(6)-O(3)-C(7)-O(4)	-176.08(19)
C(6)-O(3)-C(7)-C(8)	4.3(2)
C(2)-C(1)-C(8)-C(9)	-4.3(4)
C(6)-C(1)-C(8)-C(9)	-179.26(18)
C(2)-C(1)-C(8)-C(7)	173.9(2)
C(6)-C(1)-C(8)-C(7)	-1.1(2)
O(4)-C(7)-C(8)-C(1)	178.4(2)
O(3)-C(7)-C(8)-C(1)	-2.0(2)
O(4)-C(7)-C(8)-C(9)	-3.2(3)
O(3)-C(7)-C(8)-C(9)	176.40(17)
C(1)-C(8)-C(9)-C(14)	33.9(3)
C(7)-C(8)-C(9)-C(14)	-144.0(2)
C(1)-C(8)-C(9)-C(10)	-144.3(2)
C(7)-C(8)-C(9)-C(10)	37.8(3)
C(14)-C(9)-C(10)-C(11)	-0.9(3)
C(8)-C(9)-C(10)-C(11)	177.4(2)

 Table 6.
 Torsion angles [°] for 3af (CCDC 2182801).

C(9)-C(10)-C(11)-C(12)	-0.3(4)
C(10)-C(11)-C(12)-C(13)	1.3(4)
C(11)-C(12)-C(13)-C(14)	-1.0(4)
C(12)-C(13)-C(14)-C(9)	-0.3(3)
C(10)-C(9)-C(14)-C(13)	1.2(3)
C(8)-C(9)-C(14)-C(13)	-177.06(19)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 3af (CCDC 2182801) [Å and °].

.97 2.62	2 3.417(2	3) 140.1
.82 2.03	3 2.833(2	2) 167.4
	82 2.03	82 2.03 2.833(

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+1/2 #2 -x+1,-y,-z+1

4. Reference

[1] W. Kuldeep, C. Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, *Synth. Commun.*, 2008, **38**, 4434–4444.

[2] S. K. Bagal, R. M. Adlington, J. E. Baldwin and R. Marquez, *J. Org. Chem.*, 2004, 69, 9100-9108.

[3] H. Rudler, A. Parlier, T. Durand-Réville, B. Martin-Vaca, M. Audouin, E. Garrier,

V. Certal and J. Vaissermann, Tetrahedron, 2000, 56, 5001-5027.

[4] Y. Harada, Y. Fukumoto, N. Chatani, Org. Lett., 2005, 7, 4385-4387.

[5] M. N. Palange, R. G. Gonnade and R. Kontham, Org. Biomol. Chem., 2019, 17, 5749-5759.

5. ¹H-NMR and ¹³C-NMR spectra of compounds 3aa-p and 4aa-i

¹H NMR spectrum of 3aa

¹H NMR spectrum of 3ab

7,1284 7,128 7,128 7,128 7,128 7,128 7,128 7,128 7,128 7,128 7,128 7,128 7,128 7,128 7,129 7,297

¹H NMR spectrum of 3ac

¹H NMR spectrum of 3ad

110 100 90 80 70 fl (ppm) 130 120

¹H NMR spectrum of 3ae

¹H NMR spectrum of 3af

¹H NMR spectrum of 3ag

¹H NMR spectrum of 3ah

20 210 200 190 180 170 160 150 140 130 120

¹H NMR spectrum of 3ai

- 101 - 1125 -

¹H NMR spectrum of 3aj

(1) 100 (100)

¹H NMR spectrum of 3ak

¹H NMR spectrum of 3al

¹H NMR spectrum of 3an

7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7.1.121
7

¹H NMR spectrum of 3ao

¹H NMR spectrum of 3ap

 一部では、

¹H NMR spectrum of 4aa

yhj single_pulse d	7.66 7.66 7.64 7.45	-7.44 -7.43 -7.41 -7.37	7.35	[7.26 5.94 5.93	70°.	2.91 72.91 72.45 72.45	2.42 2.42 1.92	88.11 18.11
]
		· · · · · ·	2.07 2.07 1.00				2.14 ×	
^{3.0} 12.5 12.0 11.5 11.0 10. 13C NMR spectr	⁵ 10.0 9.5 7 um of 4	9.0 8.5 laa	8.0 7.5 7.0	6.5 6.0 fl (ppm)	5.5 5.0 4.5	4.0 3.5 3.0	2.5 2.0 1.5	1.0 0.5 0.0
yhj single pulse decoupled gated NOE	-169.15	~149.23 ~147.67	128.49	62.011-	77.32 77.00 76.68		<u>_</u> 24.27	122.66
C C C Ph					, and the second se			
ta, aki Mila dakan dakan dakan ya ashan dafkan tak				nili an a san a dia a m	nautoutur surtuur daabbaat	unovona dilata na dalani dar		
	170 160	150 140	130 120	110 100	90 80 71	0 60 50	40 30	1 1 1 1 20 10 0

¹H NMR spectrum of 4ab

¹H NMR spectrum of 4ac

¹H NMR spectrum of 4ad

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H NMR spectrum of 4ae

110 100 90 fl (ppm) 20 210 200 190 180 170 160 130 120

¹H NMR spectrum of 4af

¹H NMR spectrum of 4ag

¹H NMR spectrum of 4ah

210 200 190 180 170 160 150 140 130 120

¹H NMR spectrum of 4ai

