Supplementary materials

Enhancing mechanism of arsenic(III) adsorption by MnO₂loaded calcined MgFe layered double hydroxide

Mingqi Xie^{a,b}, Xiangping Luo^{a,b}, Chongmin Liu^{a,b,d}, Shaohong You^{a,b}, Saeed Rad^{a,b}, Huijun He^{a,b}, Yongxiang Huang^{a,b}, Zhihong Tu^{a,b,c}

^a College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China

^b Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China

^{c.} CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese

Academy of Sciences, Guangzhou 510640, China

d. Correspondence: chongmin@glut.edu.cn

Fig. S1. Kinetic models of two composites for As(III): pseudo first-order model for $MnO_2/MgFe-LDH(a)$; pseudo-first-order model for $MnO_2/MgFe-LDO_{400^\circ C}(b)$; pseudo-second-order model for $MnO_2/MgFe-LDH(c)$; pseudo second-order model for $MnO_2/MgFe-LDO_{400^\circ C}$ secondary kinetic model(d).

Fig. S2. Isothermal model for the adsorption of As(III) by two adsorbents. Isothermal model for the adsorption of $MnO_2/MgFe-LDH(a)$; Isothermal model for the adsorption of $MnO_2/MgFe-LDO_{400^{\circ}C}$ (b).