Supporting Information

Synthesis and Hybridizing Properties of P-Stereodefined Chimeric [PS]-{DNA:RNA} and [PS]-{DNA:(2'-OMe)-RNA} Oligomers.

Katarzyna Jastrzębska*, Anna Maciaszek, Rafał Dolot, Agnieszka Tomaszewska-Antczak, Barbara Mikołajczyk and Piotr Guga

Table of contents

Structures of ^M N-OTP monomers
Structures of ^T N-OTP monomers
Separation of the P-diastereomers of ^M N-OTP and ^T N-OTP monomers
HR MS spectra for separated P-diastereomers of ^M N-OTP and ^T N-OTP
¹ H NMR spectra for separated P-diastereomers of ^M N-OTP and ^T N-OTP monomers
¹³ C NMR spectra for separated P-diastereomers of ^M N-OTP and ^T N-OTP monomers
³¹ P NMR spectra for separated P-diastereomers of ^M N-OTP and ^T N-OTP monomers
Crystallography of the detritylated <i>fast</i> -eluting 3a monomer73
Details of X-ray Data Collection and Reduction73
Table S1. The data-collection, processing and refinement statistics
MALDI-TOF mass spectra recorded for chimeric PS-oligonucleotides76
Table S2. Efficiency of coupling (cpl) with 2 and 3 in synthesis of [PS]-{DNA: ^M RNA} and [PS]-{DNA:RNA}, respectively, calculated from the DMT ⁺ decay assay. PSCh = [PS]-Chimeric oligomer

Structures of ^MN-OTP monomers

Structures of ^TN-OTP monomers

3

Separation of the P-diastereomers of ^MN-OTP and ^TN-OTP monomers.

Figure S1a. HPLC profiles recorded for semi-preparative separation of the P-diastereomers of ^MA-OTP, ^MC-OTP, ^MG-OTP, and ^MU-OTP. The conditions were determined using a Phenomenex Luna 5 μm Silica column (100Å; 250×10 mm; flow rate 5 mL/min). The UV detector was set at 275 nm. For each run, the column was loaded with 100-150 mg ^MN-OTP.

Figure S1b. HPLC profiles recorded for semi-preparative separation of the P-diastereomers of ^TA-OTP, ^TC-OTP, ^TG-OTP, and ^TU-OTP. The conditions were determined using a Phenomenex Luna 5 μm Silica column (100Å; 250×10 mm; flow rate 5 mL/min). The UV detector was set at 275 nm. For each run, the column was loaded with 100-150 mg ^TN-OTP.

HR MS spectra for separated P-diastereomers of ^MN-OTP and ^TN-OTP.

Figures S2a-h. HR MS spectra for separated P-diastereomers of ^MN-OTP (2a-d) recorded with a SYNAPT G2-Si High Definition Mass Spectrometer (qTOF, Electro Spray Ionization; Waters)

2a: *fast*-eluting ^MA-OTP

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions

59 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-50 H: 0-50 N: 0-5 O: 0-9 P: 1-1 S: 2-2

Jastrzebska

191211_KJ_As_A 17 (0.423) Cm (3:39)

2.05e+007 892.2625 100-893.2657 % 894.2649 860.2919 865.8956 876.2811 892.0962 895.2650 928.2391_931.2443 m/z 848.2420 856.2867 908.2595 918.6897 0 860.0 850.0 870.0 920.0 930.0 880.0 890.0 900.0 910.0 Minimum: -1.5 5.0 5.0 70.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 892.2625 892.2604 2.4 26.5 2.1 1613.8 n/a C46 H47 N5 O8 P S2 n/a

2b: *slow*-eluting ^MA-OTP

Page 1

TOF MS ES-

7

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions

83 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-50 H: 0-50 N: 0-5 O: 0-9 P: 1-1 S: 2-2

Jastrzebska 191211_KJ_Cf_A 3 (0.087) Cm (3:41)

2c: *fast*-eluting ^MC-OTP

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions

83 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-9 P: 1-1 S: 2-2 Jastrzebska 191211_KJ_Cs_A 36 (0.863) Cm (36:41)

2d: *slow*-eluting ^MC-OTP

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions

147 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-50 H: 0-55 N: 0-5 O: 0-9 P: 1-1 S: 1-2

Jastrzebska_K

200123_KJ_Gf_ 6 (0.158) Cm (3:41)

2e: *fast*-eluting ^MG-OTP

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions

147 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-55 N: 0-5 O: 0-9 P: 1-1 S: 1-2 Jastrzebska_K 200123_KJ_GS_40 (0.970) Cm (35:41)

2f: slow-eluting MG-OTP

Page 1

1: TOF MS ES-

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions 230 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-9 P: 1-1 S: 2-2 Jastrzebska 191211_KJ_Uf_A 4 (0.124) Cm (4:41) 100- 765.2079

2g: fast-eluting ^MU-OTP

TOF MS ES-5.36e+007

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions

230 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-9 P: 1-1 S: 2-2 Jastrzebska

2h: *slow*-eluting ^MU-OTP

Page 1

¬ m/z

Figure S3a-h. HR MS spectra for separated P-diastereomers of ^TN-OTP (3a-d) recorded with a SYNAPT G2-Si High Definition Mass Spectrometer (qTOF, Electro Spray Ionization; Waters)

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 516 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 0-5 O: 0-11 Si: 1-1 P: 1-1 S: 1-2 200526_KJ_Af_newA 4 (0.124) Cm (4:41)

3a: *fast*-eluting ^TA-OTP

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 516 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 0-5 O: 0-11 Si: 1-1 P: 1-1 S: 1-2

200526_KJ_As_new_A 4 (0.124) Cm (3:40)

3b: *slow*-eluting ^TA-OTP

Page 1

TOF MS ES-

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 670 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Elements Used:

C: 0-50 H: 0-65 N: 0-5 O: 0-9 S: 0-2 P: 0-1 Si: 0-1

3c: *fast*-eluting ^TC-OTP

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions

670 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-65 N: 0-5 O: 0-9 Si: 0-1 P: 0-1 S: 0-2

200429_KJ_CsA 40 (0.970) Cm (6:41)

3d: *slow*-eluting ^TC-OTP

Page 1

TOF MS ES-

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions

666 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-65 N: 0-5 O: 0-9 Si: 0-1 P: 0-1 S: 0-2 200429 KJ GfB 20 (0.493) Cm (3:39)

3e: *fast*-eluting ^TG-OTP

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions

666 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-65 N: 0-5 O: 0-9 S: 0-2 P: 0-1 Si: 0-1

3f: *slow*-eluting ^TG-OTP

Page 1

TOF MS ES-5.29e+007

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 1249 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-556 N: 0-3 O: 0-9 S: 0-2 P: 0-1 Si: 0-1

200429_KJ_UfA 20 (0.493) Cm (5:40) TOF MS ES-2.04e+007 865.2776 100-866.2807 %-867.2795 868.2806 871.2859 865.1927 883.2850 876.8894 879.2574 881.2720 851.3026_852.3003 0-----855.0 865.0 870.0 850.0 860.0 875.0 880.0 885.0 Minimum: -1.5 5.0 5.0 70.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 865.2778 2679.7 C43 H54 N2 O9 S2 P Si 865.2776 -0.2 -0.2 19.5 5.793 0.30 -2.5 -2.9 865.2801 28.5 2685.8 11.868 0.00 C50 H49 N2 O6 S2 Si 865.2746 3.0 3.5 C47 H50 N2 O8 S2 P 24.5 2674.0 0.058 94.37 865.2744 3.2 2676.9 2.933 5.32 C46 H50 N2 O9 S P Si 3.7 24.5 865.2818 -4.2 23.5 2683.8 9.892 0.01 -4.9 C48 H54 O7 S2 P Si

3g: *fast*-eluting ^TU-OTP

Page 1

TOF MS ES-2.38e+007

∽ m/z

930

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions

1042 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-50 H: 0-65 N: 0-5 O: 0-9 Si: 0-1 P: 0-1 S: 0-2

200429 KJ_UsA 38 (0.916) Cm (6:39)

100-

%

0-

Minimum:

Maximum:

Mass

780

865.2775	865.2778	-0.3	-0.3	19.5	2672.4	2.614	7.32	C43	Н54	N2	09	si	P S2
	865.2761	1.4	1.6	24.5	2675.9	6.134	0.22	C45	H49	N4	08	Si	S2
	865.2801	-2.6	-3.0	28.5	2679.9	10.121	0.00	C50	Н49	N2	06	Si	S2
	865.2746	2.9	3.4	24.5	2669.9	0.110	89.56	C47	Н50	N2	08	P S	2
	865.2744	3.1	3.6	24.5	2673.4	3.555	2.86	C46	Н50	N2	09	Si 🛛	ΡS
	865.2818	-4.3	-5.0	23.5	2677.7	7.859	0.04	C48	H54	07	Si	P S	2

3h: *slow*-eluting ^TU-OTP

¹H NMR spectra for separated P-diastereomers of ^MN-OTP and ^TN-OTP monomers.

Figure S4. ¹H NMR spectra for separated P-diastereomers of ^MN-OTP and ^TN-OTP monomers, recorded with a Bruker AV-500 spectrometer (500 MHz)

Fast-eluting ^MA-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.50 (1H, NHCO), 8.51 (1H, C8-H), 8.23 (1H, C2-H), 7.58-6.79 (18H, DMT, Bz), 6.09-6.08 (1H, C1'-H), 5.51-5.47 (1H, C3'-H), 4.89-4.87 (1H, C2'-H), 4.40-4.39 (1H, C4'-H), 4.24-4.20 (2H, P-O-CH₂C-S), 3.71 (6H, 2xOCH₃), 3.39 (3H, 2'OCH₃), 3.45-3.34 (2H, 5'CH₂), 1.96-1.17 (10H, -(CH₂)₅-*"spiro"*)

Slow-eluting ^MA-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.51 (1H, NHCO), 8.53 (1H, C8-H), 8.24 (1H, C2-H), 7.59-6.78 (18H, DMT, Bz), 6.09-6.08 (1H, C1'-H), 5.63-5.59 (1H, C3'-H), 4.84-4.82 (1H, C2'-H), 4.41-4.38 (1H, C4'-H), 4.28-4.20 (2H, P-O-CH₂C-S), 3.70 (6H, 2xOCH3), 3.41 (3H, 2'OCH₃), 3.50-3.34 (2H, 5'CH₂), 1.96-1.17 (10H, -(CH₂)₅-*"spiro"*)

k. jastrzebska = 1H.stan CD3CN {C:\NMR_Data\Service\CBMM} nmrsu 1

Fast-eluting ^MC-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.25 (1H, NHCO), 8.37-8.35 (1H, C6-H), 7.62-7.60 (1H, C5-H), 7,52-6,88 (18H, DMT, Bz), 5,94 (1H, C1'-H), 5,29-5,24 (1H, C3'-H), 4,30-4.29 (1H, C2'-H), 4.20-4.19 (1H, C4'-H), 4,15-4.08 (2H, P-O-CH₂C-S), 3,77 (6H, 2xOCH₃), 3.55 (3H, 2'OCH₃), 3,48-3.46 (2H, 5'CH₂), 1,92-1,19 (10H, -(CH2)₅- "spiro")

Slow-eluting ^MC-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.24 (1H, NHCO), 8.40-8.39 (1H, C6-H), 7.63-7.60 (1H, C5-H), 7,50-6,88 (18H, DMT, Bz), 5,94 (1H, C1'-H), 5,32-5,27 (1H, C3'-H), 4,32-4.30 (1H, C2'-H), 4.26-4.25 (1H, C4'-H), 4,21-3.99 (2H, P-O-CH₂C-S), 3,77 (6H, 2xOCH₃), 3.55 (3H, 2'OCH₃), 3,59-3.44 (2H, 5'CH₂), 1,93-1,19 (10H, -(CH₂)₅- *"spiro"*)

Fast-eluting ^MG-OTP in CD₃CN; δ (ppm)

¹H NMR: 11.93 (1H, N1-H), 9.10 (1H, N2-H), 7.83 (1H, C8-H), 7.40-6.77 (13H, DMT), 5.88-5.87 (1H, C1'-H), 5.40-5.36 (1H, C3'-H), 4.79-4.77 (1H, C2'-H), 4.34-4.33 (1H, C4'-H), 4.22-4.17 (2H, P-O-CH₂C-S), 3.73 (6H, 2xOCH₃), 3.41 (3H, 2'OCH₃), 3.40-3.30 (2H, C5'CH₂), 2.51-2.46 (1H, CH, iBu), 2.02-1.40 (10H, -(CH₂)₅- *"spiro"*), 1.12-1.08 (6H, 2xCH₃, iBu)

Slow-eluting ^MG-OTP in CD₃CN; δ (ppm)

¹H NMR: 11.92 (1H, N1-H), 9.12 (1H, N2-H), 7.84 (1H, C8-H), 7.40-6.78 (13H, DMT), 5.89-5.88 (1H, C1'-H), 5.50-5.46 (1H, C3'-H), 4.72-4.70 (1H, C2'-H), 4.32-4.30 (1H, C4'-H), 4.26-4.20 (2H, P-O-CH₂C-S), 3.73 (6H, 2xOCH₃), 3.42 (3H, 2'OCH₃), 3.39-3.37 (2H, C5'CH₂), 2.53-2.48 (1H, CH, iBu), 1.96-1.36 (10H, -(CH₂)₅- *"spiro"*), 1.12-1.09 (6H, 2xCH₃, iBu)

¹H NMR: 9.27 (1H, N3-H), 7,65-7.63 (1H, C6-H), 7,43-6,86 (13H, DMT), 5,89-5.88 (1H, C1'-H), 5,33-5.31 (1H, C3'-H), 4,26-4.22 (1H, C2'-H), 4.20-4.16 (1H, C4'-H), 4.07-4.02 (2H, P-O-CH₂C-S), 3.75 (6H, 2xOCH₃), 3.45 (3H, 2'OCH₃), 3.40-3.39 (2H, 5'CH₂), 1.96-1.17 (10H, -(CH₂)₅-*"spiro"*)

Slow-eluting ^MU-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.01 (1H, N3-H), 7,65-7.63 (1H, C6-H), 7,43-6,86 (13H, DMT), 5,85 (1H, C1'-H), 5,31-5.28 (1H, C3'-H), 4,27-4.25 (1H, C2'-H), 4.20-4.18 (1H, C4'-H), 4.05-4.01 (2H, P-O-CH₂C-S), 3.76 (6H, 2xOCH₃), 3.45 (3H, 2'OCH₃), 3.44-3.37 (2H, 5'CH₂), 1.92-1.17 (10H, -(CH₂)₅-*"spiro"*)

Fast-eluting ^TA-OTP in CD₃CN; δ (ppm)

¹H NMR: 8.97 (1H, NHCO), 8.73 (1H, C8-H), 8.24 (1H, C2-H), 7.54-6.79 (18H, DMT, Bz), 6.14-6.11 (1H, C1'-H), 5.52-5.45 (1H, C3'-H), 5.08-5.03 (1H, C2'-H), 4.45-4.44 (1H, C4'-H), 4.23-4.10 (2H, P-O-CH₂C-S), 3.76 (6H, 2xOCH₃), 3.58-3.41 (2H, 5'CH₂), 2.11-1.63 (10H, -(CH₂)₅-*"spiro"*), 0.73 (9H, 3xCH₃, tert-Butyl), 0.02 (6H, 2xCH₃, -(CH₃)₂Si)

Slow-eluting ^TA-OTP in CD₃CN; δ (ppm)

¹H NMR: 8.94 (1H, NHCO), 8.72 (1H, C8-H), 8.22 (1H, C2-H), 7.57-6.78 (18H, DMT, Bz), 6.13-6.10 (1H, C1'-H), 5.49-5.40 (1H, C3'-H), 5.13 (1H, C2'-H), 4.42 (1H, C4'-H), 4.18-4.07 (2H, P-O-CH₂C-S), 3.76 (6H, 2xOCH₃), 3.47-3.45 (2H, 5'CH₂), 2.02-1.59 (10H, - (CH₂)₅-*"spiro"*), 0.73 (9H, 3xCH₃, tert-Butyl), 0.02 (6H, 2xCH₃, -(CH₃)₂Si)

Fast-eluting ^TC-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.28 (1H, NHCO), 8.50-8.45 (1H, C6-H), 7.61 (1H, C5-H), 7,52-6,88 (18H, DMT, Bz), 5,87 (1H, C1'-H), 5,27-5,21 (1H, C3'-H), 4,40-4.38 (2H, C2'-H, C4'-H), 4,24-4.03 (2H, P-O-CH₂C-S), 3,77 (6H, 2xOCH₃), 3,76-3.50 (2H, 5'CH₂), 1,95-1,17 (10H, -(CH₂)₅-*"spiro"*), 0.89 (9H, 3xCH₃, tert-Butyl), 0.15-0.12 (6H, 2xCH₃, -(CH₃)₂Si)

· · · · · · · · · · · · · · · · · · ·		•••••	••••						
9	8	7	6	5	4	3	2	1	ppm
<u>1.013</u>	1.058	5.095 8.010 4.078	1.000	1.099	1.076 1.005 1.005 1.085 6.005 1.096 1.045		4.061 3.014 3.024	9.016	6.065

Slow-eluting ^TC-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.26 (1H, NHCO), 8.32-8.30 (1H, C6-H), 7.61 (1H, C5-H), 7.62-6.88 (18H, DMT, Bz), 5.90-5.89 (1H, C1'-H), 5.27-5,22 (1H, C3'-H), 4.47-4.45 (1H, C2'-H), 4.35-4.34 (1H, C4'-H), 4.14-3.98 (2H, P-O-CH₂C-S), 3,77 (6H, 2xOCH3), 3,56-3.44 (2H, 5'CH₂), 1,91-1,36 (10H, -(CH₂)₅- *"spiro"*), 0.89 (9H, 3xCH₃, tert-Butyl), 0.13-0.12 (6H, 2xCH₃, -(CH₃)₂Si)

Fast-eluting ^TG-OTP in CD₃CN; δ (ppm)

¹H NMR: (1H, N1-H), (1H, N2-H), 7.86-7.82 (1H, C8-H), 7.44-6.71 (13H, DMT), 5.81-5.77 (1H, C1'-H), 5.37-5.14 (1H, C3'-H), 5.09-4.91 (1H, C2'-H), 4.62-4.47 (1H, C4'-H), 4.34-3.76 (2H, P-O-CH₂C-S), 3.73 (6H, 2xOCH₃), 3.53-3.49 (1H, CH, iBu), 3.38-3.30 (2H, C5'CH₂), 1.93-1.50 (10H, -(CH₂)₅- *"spiro"*), 1.13-1.10 (15H, 5xCH₃, iBu; tert-Butyl), 0.08- (-0.15) (6H, 2xCH₃, -(CH₃)₂Si

k. jastrzebska =kj-gs= 1H.stan CD3CN {C:\NMR_Data\Service\CBMM} nmrsu 2

Slow-eluting ^TG-OTP in CD₃CN; δ (ppm)

¹H NMR: (1H, N1-H), (1H, N2-H), 7.88-7.82 (1H, C8-H), 7.41-6.75 (13H, DMT), 6.00-5.70 (1H, C1'-H), 5.30-4.92 (1H, C3'-H), 4.82-4.54(1H, C2'-H), 4.39-4.10 (1H, C4'-H), (2H, P-O-CH2C-S), 3.71 (6H, 2xOCH3), 3.40-3.20 (2H, C5'CH2), 2.62-2.54 (1H, CH, iBu), 1.83-1.18 (10H, -(CH2)5- *"spiro"*), 1.07-1.04 (15H, 5xCH3, iBu; tert-Butyl), 0.06-(-0.11) (6H, 2xCH3, -(CH3)2Si)

9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	ppm
1.003			2.024	4.040		1.000	020	1.011	1.055	1.085	1.020 1.020			7.067	3.011	9.049		6.003

Fast-eluting ^TU-OTP in CD₃CN; δ (ppm)

¹H NMR: 8.99 (1H, N3-H), 7,72-7.70 (1H, C6-H), 7,40-6,86 (13H, DMT), 5,83-5.82 (1H, C1'-H), 5,25-5.23 (2H, C3'-H, C2'-H), 4.41-4.39 (1H, C4'-H), 4.38-4.15 (2H, P-O-CH₂C-S), 3.76 (6H, 2xOCH₃), 3.53-3.41 (2H, 5'CH₂), 1.93-1.51 (10H, -(CH₂)₅-*"spiro"*), 0.86 (9H, 3xCH₃, tert-Butyl), 0.10-0.08 (6H, 2xCH₃, -(CH₃)₂Si)

Slow-eluting ^TU-OTP in CD₃CN; δ (ppm)

¹H NMR: 9.03 (1H, N3-H), 7.66-7.65 (1H, C6-H), 7.41-6.88 (13H, DMT), 5.88-5.86 (1H, C1'-H), 5.36-5.35 (1H, C3'-H), 5.28-5.24 (1H, C2'-H), 4.44-4.42 (1H, C4'-H), 4.25-4.11 (2H, P-O-CH₂C-S), 3.76 (6H, 2xOCH₃), 3.39-3.38 (2H, 5'CH₂), 1.92-1.67 (10H, - (CH₂)₅-*"spiro"*), 0.87 (9H, 3xCH₃, tert-Butyl), 0.11-0.07 (6H, 2xCH₃, -(CH₃)₂Si)

¹³C NMR spectra for separated P-diastereomers of ^MN-OTP and ^TN-OTP monomers

Figure S5. ¹³C NMR spectra for separated P-diastereomers of ^MN-OTP and ^TN-OTP monomers.

Fast-eluting ^MA-OTP; δ (ppm, CD₃CN): 170.71, 158.71, 151.93, 150.14, 144.87, 142.80, 135.63, 132.60, 128.65, 128.19, 126.93, 124.82, 117.37, 113.10, 86.53, 86.47, 82.79, 82.74, 80.61, 80.58, 79.73, 76.06, 76.00, 69.08, 62.71, 60.01, 58.65, 54.94, 36.67, 35.88, 24.94, 23.80, 23.48, 20.21, 13.57.

Slow-eluting ^MA-OTP; δ (ppm, CD₃CN): 170.71, 158.72, 151.86, 150.13, 144.89, 142.83, 135.59, 130.15, 128.64, 128.19, 128.08, 127.87, 117.37, 113.09, 86.85, 86.39, 82.04, 82.00, 80.50, 79.77, 75.28, 75.23, 69.52, 62.43, 60.02, 58.32, 54.93, 36.52, 36.48, 36.01, 24.90, 23.60, 23.55, 20.22, 13.57.

Fast-eluting ^MC-OTP; δ (ppm, CD₃CN): 161.03, 157.42, 142.45, 134.04, 133.67, 131.85, 129.02, 128.89, 127.72, 126.83, 112.08, 95.61, 87.24, 86.08, 81.08, 78.32, 76.42, 75.79, 71.83, 67.37, 58.95, 57.63, 53.95, 35.76, 35.13, 23.97, 22.49.

Slow-eluting ^MC-OTP; *;* δ (ppm, CD₃CN): 161.22, 157.75, 143.22, 133.40, 132.87, 131.57, 128.82, 128.12, 127.32, 126.75, 115.98, 111.88, 94.77, 85.64, 83.23, 78.45, 77.21, 67.75, 66.32, 61.14, 53.61, 35.77, 34.62, 23.53, 22.23.

Fast-eluting ^MG-OTP; δ (ppm, CD₃CN): 179.70, 158.76, 158.72, 155.27, 148.54, 147.99, 144.84, 137.99, 135.66, 135.54, 130.12, 130.02, 129.04, 128.06, 127.87, 127.66, 126.98, 121.57, 117.36, 113.04, 86.37, 86.10, 82.93, 82.88, 80.67, 79.71, 75.97, 75.91, 69.07, 63.20, 58.58, 54.92, 36.54, 35.88, 35.77, 24.91, 23.75, 23.47, 18.23, 18.11.

Slow-eluting ^MG-OTP; δ (ppm, CD₃CN): 179.69, 158.76, 158.73, 155.25, 148.45, 147.98, 144.85, 137.96, 135.55, 135.50, 130.15, 130.07, 128.07, 121.49, 117.36, 113.04, 86.35, 86.25, 82.09, 82.04, 80.73, 79.74, 75.19, 75.13, 62.73, 58.29, 54.91, 35.97, 35.82, 24.87, 23.56, 18.23, 18.12.

Fast-eluting ^MU-OTP; δ (ppm, CD₃CN): 170.71, 162.91, 158.84, 150.40, 144.60, 139.98, 135.38, 135.21, 130.19, 128.10, 128.03, 127.10, 117.37, 113.23, 102.16, 86.96, 81.82, 81.77, 81.58, 79.71, 74.92, 74.87, 69.14, 61.92, 60.01, 58.49, 54.99, 36.58, 35.87, 24.93, 23.74, 23.52, 20.21, 13.57.

Slow-eluting ^MU-OTP; δ (ppm, CD₃CN): 170.20, 165.89, 158.67, 151.93, 149.72, 144.98, 142.98, 135.80, 135.72, 133.84, 132.58, 130.03, 128.66, 127.98, 127.80, 117.36, 113.01, 89.20, 86.14, 83.72, 75.29, 73.67, 71.79, 71.05, 62.90, 54.91, 25.20, 17.78.

Fast-eluting ^TA-OTP; δ (ppm, CD₃CN): 158.71, 158.63, 144.85, 142.80, 135.64, 132.62, 130.10, 128.68, 124.86, 117.36, 113.08, 86.55, 82.76, 82.71, 80.57, 79.73, 78.19, 76.02, 75.97, 69.10, 64.07, 62.68, 58.61, 54.92, 54.90, 45.66, 36.65, 35.96, 35.86, 24.92, 23.79, 21.86, 8.17.

Slow-eluting ^TA-OTP; δ (ppm, CD₃CN): 158.72, 158.63, 151.87, 150.13, 144.88, 142.82, 135.81, 135.60, 133.87, 132.62, 130.13, 128.68, 128.19, 127.84, 124.89, 117.35, 113.05, 113.00, 86.87, 86.36, 81.95, 79.78, 78.19, 75.24, 69.51, 64.00, 62.40, 58.29, 54.91, 45.64, 37.97, 36.49, 36.00, 26.40, 25.59, 24.88, 23.59, 23.52, 21.87, 8.23.

Fast-eluting ^TC-OTP; δ (ppm, CD₃CN): 162.80, 158.94, 144.53, 144.18, 135.26, 135.14, 133.43, 132.91, 130.44, 130.37, 128.64, 128.47, 128.10, 128.01, 127.28, 117.35, 113.20, 96.28, 90.84, 87.04, 80.26, 80.21, 79.94, 75.24, 74.71, 74.66, 69.08, 61.10, 59.99, 54.93, 45.92, 36.21, 35.93, 35.88, 25.14, 24.85, 23.69, 23.14, 20.18, 17.74, 13.54, 8.09.

Slow-eluting ^TC-OTP; δ (ppm, CD₃CN): 162.81, 158.89, 144.42, 144.26, 135.39, 135.23, 133.41, 132.95, 130.27, 130.22, 128.66, 128.30, 128.12, 128.03, 127.21, 117.35, 113.21, 96.51, 90.19, 87.07, 79.16, 75.48, 75.42, 75.01, 69.72, 61.32, 54.96, 36.97, 35.83, 25.22, 24.84, 23.90, 23.32, 17.76.

Fast-eluting ^TG-OTP; δ (ppm, CD₃CN): 172.18, 158.60, 152.27, 144.41, 143.32, 135.45, 134.00, 132.94, 129.46, 128.70, 113.34, 87.93, 86.84, 83.00, 74.35, 68.81, 62.64, 55.24, 37.00, 36.58, 25.52, 23.74, 17.88, 11.21.

Slow-eluting ^TG-OTP; δ (ppm, CD₃CN): 179.73, 158.64, 148.74, 148.49, 148.07, 145.11, 138.15, 135.74, 130.09, 130.04, 128.04, 127.82, 126.90, 117.35, 113.04, 112.99, 88.64, 86.24, 86.09, 84.27, 75.58, 71.25, 64.17, 63.22, 54.91, 45.53, 37.98, 35.52, 33.27, 26.41, 25.20, 18.43, 9.53.

Fast-eluting ^TU-OTP; δ (ppm, CD₃CN): 162.99, 157.36, 149.30, 147.17, 143.05, 134.13, 128.74, 126.76, 111.93, 109.70, 85.43, 83.50, 76.56, 75.93, 75.29, 70.72, 61.57, 53.92, 40.20, 24.40, 16.61, 10.61.

Slow-eluting ^TU-OTP; δ (ppm, CD₃CN): 162.13, 158.86, 145.23, 140.33, 135.27, 130.18, 128.05, 128.02, 117.35, 112.24, 102.31, 87.68, 82.14, 62.41, 54.98, 36.93, 25.11, 23.76, 22.80, 18.21, 9.87.

³¹P NMR spectra for separated P-diastereomers of MN-OTP and TN-OTP monomers.

Figure S6. ³¹P NMR spectra for separated P-diastereomers of ^MN-OTP and ^TN-OTP monomers.

K.T.	-Af-2'OMe				22					
110	111 2 0110				0				Current NAME EXPNO	Data Parameters jas12702_2020 1
					10				PROCNO	1
									F2 - Ac Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG	quisition Parameters 20200227 9.18 AV-200 5 mm QNP 11/13 27968 CD3CN 32 36496.352 Hz 1.113780 Hz 0.4489216 sec 2580.3
									DW DE TE D1 d11 DELTA	13.700 usec 7.00 usec 8.0 K 2.0000000 sec 0.0300000 sec 1.899998 sec
									TDO	1.05555550 Sec
									NUC1 P1 PL1	= CHANNEL fl ====== 31P 9.60 usec 2.00 dB
									SF01	81.0283030 MHz
									CPDPRG[NUC2 PCPD2 PL2 PL12 PL13 SF02	= CHANNEL f2 ====== 2 waltz16 100.00 usec -1.00 dB 22.10 dB 40.00 dB 200.1610008 MHz
									F2 - Pr SI WDW SSB LB GB PC	00000000000000000000000000000000000000
mummumum	had and prophylastic and superiord	h.shiftina harkan tana tana ka	un-romationist	dantrational and a start of the	ins managements	hand and the stand	nthen march for the man	high the states of the second	processing	alysticulture the science of the science
135	130 125	120	115	110	105	100	95	90	85 8	80 75 pr

Fast-eluting ^MA-OTP in CD₃CN; δ (ppm)

Slow-eluting ^MA-OTP in CD₃CN; δ (ppm)

Fast-eluting ^MC-OTP in CD₃CN; δ (ppm)

Slow-eluting ^MC-OTP in CD₃CN; δ (ppm)

Fast-eluting ^MG-OTP in CD₃CN; δ (ppm)

Slow-eluting ^MG-OTP in CD₃CN; δ (ppm)

Fast-eluting ^MU-OTP in CD₃CN; δ (ppm)

Fast-eluting ^TA-OTP in CD₃CN; δ (ppm)

Slow-eluting ^TA-OTP in CD₃CN; δ (ppm)

K	J-Cf-2'	Otbdms			06.966							Curr NAME EXPN PROCI	ent Data ja O NO	Parameter s12702_202	s 0 3 1
					1							F2 - Date, Time INST POLP TD SOLVI NS DS SWH FIDR AQ RG RG DW DE TE D1 dl1 DELT TD0	Acquisi - RUM 5 m ROG 5 m ENT ES	tion Param 2020022 AV-20 m QNP 1H/1 3276 CD3C 1.11378 0.448921 0.448921 3649. 13.70 7.0 8. 2.000000C 0.0300000 1.8999999	eters 7 8 0 3 0 8 8 N 2 2 2 Hz 6 5 sc 1 0 usec 0 8 sc 1 0 5 sc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
												NUC1 P1 PL1 SF01	==== CHA	NNEL fl == 31 9.6 2.0 81.028303	P 0 usec 0 dB 0 MHz
												CPDP) NUC2 PCPD PL2 PL12 PL13 SF02	==== CHA RG[2 2	NNEL f2 == waltz1 100.0 22.1 40.0 200.161000	6 H 0 usec 0 dB 0 dB 0 dB 0 dB 8 MHz
												F2 - SI WDW SSB LB GB PC	Process 0 0	ing parame 1638 81.026243 E 2.0 1.4	ters 4 0 MHz M 0 Hz
ji faykata ka		hin manager of the stand of the	frightfright from the	had bei far an star an star	in the second second second	international	in the second	Nites Is policy in the	nai ing kanang kanan	an in the state of	na siya karakara	hine and the second	Hard and a state	and a state of the	ayakiya yangi y
160	150	140	130	120	110	100	90	 80		 60	 50	40		20	 ppm

Fast-eluting ^TC-OTP in CD₃CN; δ (ppm)

KJ-Cs-2'Otbdms	N Current Data Parameters
	NAME jas12702_2020 EXPNO 6 PROCNO 1
	PROCNO 1 F2 - Acquisition Parameters Date_ 20200227 Time 9.40 INSTRUM AV-200 PROBHD 5 mm QNP 1H/13 PULPROG zgpg30 TD TD 32768 SOLVENT COSCN NS 32 DS 2 SWH SGLVENT CD3CN NS NS 32 DS DS 2 SWH AQ 0.4489216 sec RG 3649.1 DW 13.700 usec DE 7.00 usec TE 8.0 K D1 2.00000000 sec TE 8.0 K D1 2.00000000 sec
	DELTA 1.89999998 sec TDO 1 ====== CHANNEL fl ====== NUC1 31P P1 9.60 usec PL1 2.00 dB SF01 81.0283030 MHz
	====== CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 -1.00 dB PL12 22.10 dB PL13 40.00 dB SF02 200.1610008 MHz
	F2 - Processing parameters SI 16384 SF 81.0262430 MHz WDW EM SSB 0 LB 2.00 Hz GB 0 PC 1.40
₩₽₽₽₩₩₽₽₽₽₽₽₽₩₩₽₽₽₩₽₽₽₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽	
180 170 160 150 140 130 120 11	10 100 90 80 70 60 50 40 30 20 ppm
Now-eluting ^T C-OTP in CD₂CN ⋅ δ (ppm)	

Slow-eluting ^TG-OTP in CD₃CN; δ (ppm)

Fast-eluting ^TU-OTP in CD₃CN; δ (ppm)

Slow-eluting ^TU-OTP in CD₃CN; δ (ppm)
Crystallography of the detritylated *fast*-eluting 3a monomer.

Details of X-ray Data Collection and Reduction.

X-ray quality crystals of detritylated fast-eluting **3a** (colorless transparent plates) were grown by recrystallization from a mixture of ethyl acetate and methanol (4:1 v/v). A suitable crystal with a size of $0.11 \times 0.08 \times 0.02$ mm was selected and mounted on a suitable support. Data were collected using an XtaLAB Synergy, Dualflex, HyPix diffractometer at T = 100.00(10) K. Data were measured with ω scans of 0.5° per frame for 1.0/0.5 s using CuK_a radiation. The maximum resolution that achieved was $\Theta = 78.431^{\circ}$ (0.79 Å). The total number of runs and images was based on the strategy calculation of the program *CrysAlisPro* (Rigaku, v1.171.41.86a, 2020), and the unit cell was refined using *CrysAlisPro* based on 3835 reflections, 2% of the observed reflections.

Data reduction, scaling and absorption corrections were performed with *CrysAlisPro*. The final completeness is 99.80 % out to 78.431° in Θ . Numerical absorption correction based on Gaussian integration over a multifaceted crystal model was performed witk *CrysAlisPro*. The empirical absorption correction was calculated using spherical harmonics as implemented in SCALE3 ABSPACK. The absorption coefficient μ of this material is 2.567 mm⁻¹ at this wavelength ($\lambda = 1.542$ Å) and the minimum and maximum transmissions are 0.761 and 1.000, respectively. The structure was solved and the space group $P2_1$ (# 4) was determined with the structure solution program *XT* (Sheldrick, 2015) using intrinsic phasing with *Olex2* (Bourhis et al., 2015) as a graphical interface and refined by least squares with version 2018/3 of *ShelXL* (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were calculated geometrically and refined using the riding model. The final structure was validated using CheckCif (http://checkcif.iucr.org) and deposited in the Cambridge Crystallographic Data Centre (CCDC) under accession number 2063388. Data acquisition, processing, and refinement statistics are shown in Table S1.

References

- 1. Sheldrick GM (2015) SHELXT Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv. 71, 3–8.
- 2. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment -Olex2 dissected. *Acta Crystallogr A Found Adv.* **71**, 59–75.
- 3. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 71, 3-8.

Compound	detritylated fast-eluting 3a			
Crystal data				
CCDC	2063388			
Chemical formula	C ₃₀ H ₄₄ N ₅ O ₇ PS ₂ Si			
Formula weight	709.88			
Crystal system	monoclinic			
Space group	<i>P</i> 2 ₁			
Temperature (K)	100.00(10)			
a [Å]	7.02449(6)			
b [Å]	39.0527(2)			
c [Å]	25.57042(18)			
β (°)	89.9888(7)			
V [Å ³]	7014.61(8)			
Z	8			
d _{calc} [g/cm ³]	1.344			
Crystal dimensions [mm]	0.11 × 0.08 × 0.02			
Radiation type	CuKα			
Wavelength (Å)	1.54184			
μ [mm ⁻¹]	2.567			
Data collection				
Reflections measured	226823			
Range/indices (h, k, A	-8 710 1032 32			
$A (max_min)$ [°]	-0, 7, -49, 49, -32, 32 78 431 2 263			
Total no. of unique data	29194			
No of observed data $1 > 2\sigma(1)$	27039			
	0.0802			
· 4m	0.0002			

Table S1. The data-collection, processing and refinement statistics.

Refinement	
$R[F^2 > 2\sigma(F^2)]$	0.0563
$WR(F^2)$	0.1439
S	1.06
No. of reflections	29194
No. of parameters	1811
No. of restraints	358
H-atom treatment	H-atom parameters constrained
Δho (min, max), e/Å ³	-0.365, 0.956
Absolute structure parameter	-0.006(5)

MALDI-TOF mass spectra recorded for chimeric PS-oligonucleotides.

^MAR oligomer

^MCR oligomer

^MCS oligomer

^MGR oligomer

^MGS oligomer

AR oligomer

GR oligomer

GS oligomer

sequence	PSCh	1st cpl. with 2	2nd cpl. with 2	PSCh	1st cpl. with 3	2nd cpl. with 3
t gtcAgctAg	MAR	-	-	AR	0.75	0.81
	MAS	0.76	0.72	AS	0.86	0.85
tgtCagCtag	^M CR	0.82	0.74	CR	0.84	0.83
	^M CS	0.84	0.83	CS	0.77	0.86
tGtcaGtag	MGR	0.77	0.69	GR	0.90	0.55
	MGS	0.83	0.70	GS	0.63	0.85
tgUcagUag	^M UR	0.78	0.81	UR	0.64	0.84
	MUS	0.85	0.82	US	0.89	0.75
		AVG: 0.78			AVG: 0.79	

Table S2. Efficiency of coupling (cpl) with 2 and 3 in synthesis of [PS]-{DNA:^MRNA} and [PS]-{DNA:RNA}, respectively, calculated from the DMT⁺ decay assay. PSCh = [PS]-Chimeric oligomer.