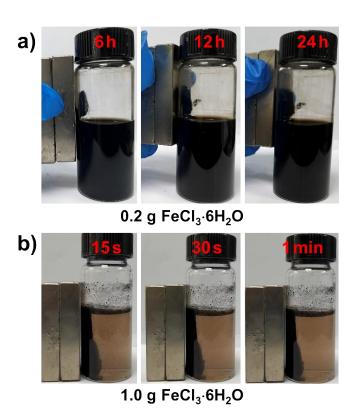
Electronic Supplementary Information


A Chiral Magnetic Molybdenum Disulfide Nanocomposite for Direct Enantioseparation of RS-Propranolol

Hai-Rong Yu, †ab Li Lei, †a Yan-Lin Wanga, Xi Wanga, Ting Liang*ab and Chang-Jing Cheng*ab

^a College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, China. E-mail: liangting@swun.edu.cn; chengcj@swun.edu.cn.

^b Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China

†Those authors contributed equally to this work.

Fig. S1 Magnetic separability of the MMoS₂-0.2 and MMoS₂-1.0 samples synthesized using 0.2 g (a) and 1.0 g (b) FeCl₃·6H₂O under an EMF from aqueous solutions.

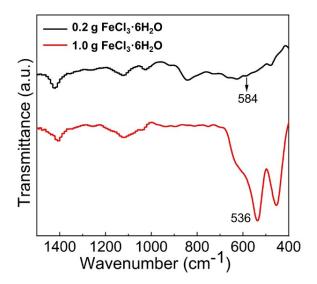


Fig. S2 FT-IR spectra of the MMoS₂ samples synthesized with different FeCl₃·6H₂O dosages of 0.2 g (*black line*) and 1.0 g (*red line*).

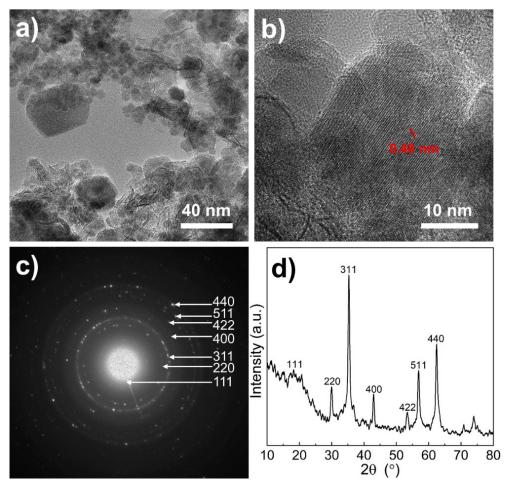


Fig. S3 TEM image (a), high-resolution TEM image (b), SAED (c), and X-ray diffraction pattern (d) of the $MMoS_2$.

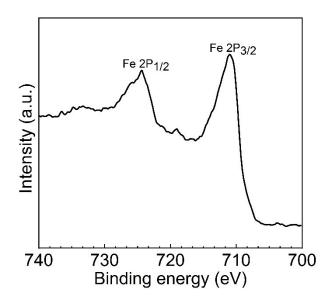


Fig. S4 XPS survey spectra of the $MMoS_2$.

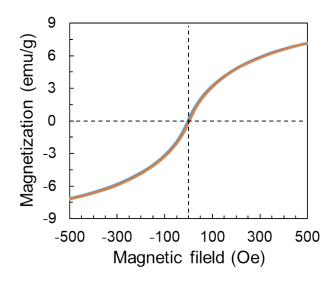
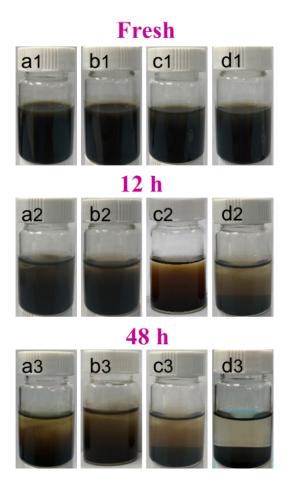



Fig. \$5 Low-field magnetic hysteresis loops of the MMoS₂/PNG2-CD.

Fig. S6 The dispersibility of the $MMoS_2/PNG1-CD$ (a1–a3), $MMoS_2/PNG2-CD$ (b1–b3), $MMoS_2/PNG3-CD$ (c1–c3), and $MMoS_2/PNG4-CD$ (d1–d3) nanocomposites in water after storing different time.

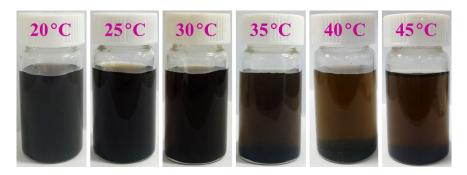


Fig. S7 The temperature-dependent dispersibility of the $MMoS_2/PNG2$ -CD nanocomposite in water. The concentration of the $MMoS_2/PNG2$ -CD is 1.0 mg/mL.