Supporting information

For

One-Pot Thiol-free Synthetic Approach to Sulfides and Sulfoxides Selectively
Sambasivarao Kotha,* Naveen Kumar Gupta and Saima Ansari
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.

E-mail: srk@chem.iitb.ac.in

Table of Contents

- Genearal information S2
- Experimental Data S2-S39
- References S40
- XRD Data for reported crystals S41-S43
- NMR plots S44-S168

General information

All commercially accessible reagents were used without further purification. Reagents like Potassiumthioacetate (PTA), benzyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, allyl bromide, 1-bromo-3-methylbut-2-ene, butenyl bromide, pentenyl bromide, hexenyl bromide, propargyl bromide, 4-bromobut-1-yne, dibromo-derivatives, citronellol, thymol, tocopherol, estrone were obtained from commercial sources such as Aldrich, Avra, Chemscene, TCI chemicals and Spectrochem. The reaction progress was monitored by thin-layer chromatography ($2.0 \times 4.0 \mathrm{~cm}^{2}$ alumina plates) using appropriate solvent systems. An iodine chamber and TLC stain solutions (prepared freshly) such as KMnO_{4} and vanillin were used to visualize the UV-inactive spots. After successive solvent extraction, the combined organic layer was washed with brine (aqueous saturated NaCl solution), dried over oven-dried anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure using a rotary evaporator. Column chromatography was performed by using Acme's silica gel (100-200 mesh) with an appropriate mixture of EtOAc and petroleum ether. NMR spectra of all newly synthesized compounds were obtained by using Bruker (AVANCE IIITM) 500 MHz and Bruker (AVANCE IIITM) 400 MHz spectrometers and solvent residual peaks as an internal standard (${ }^{1} \mathrm{H}$ NMR: 500 and $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ at $7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: 125 and $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ at 77.2 ppm). ${ }^{1} \mathrm{H}$ NMR data expressed in chemical shift ($\delta \mathrm{ppm}$), multiplicity (s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet), and coupling constants (J in hertz). Highresolution mass spectrometry (HRMS) measurements of unknown compounds were done by using Bruker (Maxis Impact) or Micromass Q-ToF spectrometers. The melting points (mp's) of solid compounds were obtained from a Veego/Buchi 560 melting point apparatus and are uncorrected. X-ray diffraction data was collected on a Bruker D8 QUEST (APEX-II CCD) diffractometer equipped withmonochromated $\operatorname{Mo} \mathrm{K} \alpha(\lambda=0.71073)$.

General procedure for the synthesis of sulfides (thioethers)

To the solution of benzyl bromide (1 equiv.) and potassium thioacetate (1 equiv.) in methanol (10 mL) in a two-neck round-bottom flask, stirred at room temperature for 2 h . After consumption of starting material, potassium carbonate, (3 equiv.) was added and the resulting reaction mixture was allowed to stir for 10 min . Further, bromo compound (electrophile) (1 equiv.) was transferred to the reaction mixture and stirred at room temperature for 3 h . After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was separated, washed
with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then, the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the sulfide compounds. (Reactions were carried out in 100 mg scale)

Mechanism for the Formation of Unsymmetrical and Symmetrical Sulfide (D and E)

Scheme 1. Plausible mechanism
Based on the previous reports, ${ }^{1}$ we propose the mechanism as shown in Scheme 1 for the formation of unsymmetrical sulfide as well as the dibenzyl sulfide \mathbf{E} ($\mathbf{3}$ in main manuscript). In the first step, benzyl bromide (A) interacts with potassium thioacetate to generate compound B. Next, we added potassium carbonate which abstracts proton from the compound \mathbf{B} and gives intermediate \mathbf{C}. The intermediate \mathbf{C} further reacts with primary halide to deliver the desired compound D. However, if intermediate sulfide \mathbf{C} attacks at the benzylic carbon of \mathbf{B}, it leads to the dimer \mathbf{E}. Additionally, in case of secondary/tertiary/sp ${ }^{2}$ hybridized electrophilic center of halides, unsymmetrical sulfide \mathbf{F} was not delivered and only the dimer \mathbf{E} was observed.

Allyl(benzyl)sulfane 2

Yield $114 \mathrm{mg}, 80 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.7(1 \% \mathrm{EtOAc}-$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.37-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31-$
 $7.28(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.4,134.3,129.1,128.6,127.0,117.4,34.9,34.1 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$203.0291, found 203.0291.

Dibenzylsulfane 3

Yield $136 \mathrm{mg}, 73 \%$, Appearance colorless sticky liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$ 7.36-7.25 (m,
 $10 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.5,129.6,128.7,127.6,43.5 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$253.0448, found 253.0447.

Allyl(4-bromobenzyl)sulfane 5a

Yield $174 \mathrm{mg}, 82 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.7$ (1\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.83-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.60$ (s, 2H), 3.01 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta} 137.5,134.2,131.7,130.9$, 120.9, 117.7, 34.4, 34.2 ppm , HRMS (ESI,Q-ToF) $m / z:$ calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$280.9396, found 280.9396 .

3-((Allylthio)methyl)benzaldehyde 5b

Yield $122 \mathrm{mg}, 73 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}$,
 $1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.74(\mathrm{~m}$, $1 \mathrm{H}), 5.16-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ ס 192.3, 139.8, 136.8, 135.3, 134.0, 130.2, 129.4, 128.7, 117.9, 34.5, 34.3 ppm , HRMS (ESI,QToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+}$231.0240, found 231.0240.

4-((Allylthio)methyl)benzaldehyde 5c

Yield $126 \mathrm{mg}, 75 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): ~ \boldsymbol{\delta} 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.82$ (d,

$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.03$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.9,145.8,135.4,133.9,130.1,129.8$, 117.9, 34.8, 34.3 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+}$231.0240, found 231.0240 .

4-((Allylthio)methyl)benzonitrile 5d

Yield 114 mg , 69\%, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 144.3,133.9,132.4,129.9,118.9,117.9,110.9$, 34.7, 34.3 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}$190.0684, found 190.0684.

benzyl(3-Methylbut-2-en-1-yl)sulfane 6a

Yield $146 \mathrm{mg}, 88 \%$, Appearance colorless liquid, $\mathbf{R}_{f}=0.7(1 \%$ EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.37-7.32(\mathrm{~m}, 4 \mathrm{H})$, 7.29-7.25 (m, 1H), 5.31-5.27 (m, 1H), $3.72(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}$,
 $2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 138.7,135.4,128.9,128.4$, 126.9, 120.5, 35.7, 29.2, 25.8, 17.9 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 193.1045, found 193.1045.

(4-Methylbenzyl)(3-methylbut-2-en-1-yl)sulfane 6b

Yield $144 \mathrm{mg}, 81 \%$, Appearance colorless liquid, $\mathbf{R}_{f}=0.8(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l 3}$): $\boldsymbol{\delta} 7.21$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.27-5.23(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H})$,
 $2.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 136.6,135.6,135.5,129.2,128.9,120.6,35.5,29.2,25.9,21.2,17.9 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$207.1198, found 207.1198.

(2-Bromobenzyl)(3-methylbut-2-en-1-yl)sulfane 6c

Yield $184 \mathrm{mg}, 78 \%$, Appearance colorless liquid, $\mathbf{R}_{f}=0.7(1 \% \mathrm{EtOAc}-$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta} 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}$,
 $1 \mathrm{H}), 5.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.0,135.9,133.1,130.7,128.5,127.5,124.7,120.3,35.9,29.6$, 25.8, 17.9 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$308.9709, found 308.9709 .

(3-Bromobenzyl)(3-methylbut-2-en-1-yl)sulfane 6d

Yield 194 mg, 82\%, Appearance colorless liquid, $\mathbf{R}_{f}=0.9(1 \%$ EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.36$ (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.58$
 (s, 3H) ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 141.2,135.9,131.9,130.0,127.6,122.5,120.3$, 35.1, 29.2, 25.8, 17.9 ppm, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$308.9709, found 308.9709.

(4-Bromobenzyl)(3-methylbut-2-en-1-yl)sulfane 6e

Yield $214 \mathrm{mg}, 91 \%$, Appearance colorless liquid, $\mathbf{R}_{f}=0.8$ (1% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.03$
 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}): \boldsymbol{\delta} 137.9,135.8$, 131.6, 130.7, 120.7, 120.3, 35.1, 29.2, 25.8, 17.9 ppm , HRMS (ESI,Q-ToF) $\mathbf{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$308.9709, found 308.9709.

4-(((3-Methylbut-2-en-1-yl)thio)methyl)benzaldehyde 6 f

Yield $146 \mathrm{mg}, 76 \%$, Appearance Yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5(5 \%$ EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 9.99$ ($\mathrm{s}, 1 \mathrm{H}$), 7.81 (s , $1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}$,
 $1 \mathrm{H}), 5.21-5.18(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl 3): $\boldsymbol{\delta} 192.3,140.2,136.7,136.0,135.1,129.9,129.3,128.5,120.2,35.2$, 29.3, 25.8, 17.9 ppm, HRMS (ESI,Q-ToF) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 221.0995$, found 221.0994.

4-(((3-Methylbut-2-en-1-yl)thio)methyl)benzaldehyde 6g

Yield $152 \mathrm{mg}, 79 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\boldsymbol{\delta} 9.99$ (s, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.23-5.18$
 $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 192.0,146.3,136.2,135.4,130.1,129.7,120.2,35.6,29.4,25.9,18.0 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 221.0995$, found 221.0994.

4-(((3-Methylbut-2-en-1-yl)thio)methyl)benzonitrile 6h

Yield $134 \mathrm{mg}, 71 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.6(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): \boldsymbol{\delta} 7.58$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$
 $(\mathrm{s}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$ 144.6, 136.2, 132.3, 129.7, 119.9, 118.9, 110.7, 35.4, 29.4, 25.8, 17.9 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}$218.0998, found 218.0997.

Benzyl(but-3-en-1-yl)sulfane 7a

Yield $118 \mathrm{mg}, 76 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.7$ (1\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.42-7.38(\mathrm{~m}, \mathbf{4 H}), 7.35-$
 $7.31(\mathrm{~m}, 1 \mathrm{H}), 5.94-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-$ 2.38 (m, 2H), ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l 3) : ~} \boldsymbol{\delta} 138.4,136.7,128.8,128.4,126.9,115.8$, 36.2, 33.5, 30.6 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$217.0448, found 217.0447.

(4-Bromobenzyl)(but-3-en-1-yl)sulfane 7b

Yield $160 \mathrm{mg}, 72 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.8$ (1\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.4$
$\mathrm{Hz}, 2 \mathrm{H}$), 2.33-2.27 (m, 2H), ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta}$ 137.7, 136.7, 131.7, 130.7, $120.9,116.2,35.9,33.6,30.9 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$ 294.9553, found 294.9552 .

3-((But-3-en-1-ylthio)methyl)benzaldehyde 7c

Yield $122 \mathrm{mg}, 68 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta} 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
 5.79-5.72 (m, 1H), 5.04-4.98 (m, 2H), $3.76(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 192.2,139.9,136.7,136.5,134.9,129.9,129.3,128.6$, 116.2, 35.9, 33.5, 30.9 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+}$245.0397, found 245.0396 .

4-((But-3-en-1-ylthio)methyl)benzaldehyde 7d

Yield $128 \mathrm{mg}, 71 \%$, Appearance yellow liquid, $\mathbf{R}_{f}=0.4(10 \% \mathrm{EtOAc}-$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}$,
 $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) 5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.47$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 191.9,145.9$, 136.5, 135.4, 130.1, 129.6, 116.3, 36.3, 33.5, 30.9 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+}$245.0397, found 245.0397.

4-((But-3-en-1-ylthio)methyl)benzonitrile 7e

Yield $110 \mathrm{mg}, 62 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.3(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): ~ \boldsymbol{\delta} 7.61$ (d, $J=$
 $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) 5.81-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l} 3\right): ~ \boldsymbol{\delta} 144.4,136.4$, 132.5, 129.7, 118.9, 116.4, 110.9, 36.3, 33.5, 31.0 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+} 242.0400$, found 242.0400 .

Benzyl(pent-4-en-1-yl)sulfane 8a

Yield $124 \mathrm{mg}, 74 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.9$ (1\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.34$ (d, $J=4.0 \mathrm{~Hz}$,

$4 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}) 5.83-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 138.7$, 137.9, 128.9, 128.6, 127.0, 115.3, 36.3, 32.9, 30.8, 28.5 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$231.0604, found 231.0604.

(2-Bromobenzyl)(pent-4-en-1-yl)sulfane 8b

Yield $162 \mathrm{mg}, 69 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.8$ (1\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.58(\mathrm{dd}, J=8.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$,
 $7.12(\mathrm{td}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.17(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 138.1$, $137.8,133.1,130.8,128.6,127.5,124.6,115.3,36.5,32.9,31.2,28.6 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+} 308.9709$, found 308.9709.

(3-Bromobenzyl)(pent-4-en-1-yl)sulfane 8c

Yield $166 \mathrm{mg}, 71 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.8(1 \% \mathrm{EtOAc}-$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): \boldsymbol{\delta} 7.47$ (s, 1H), 7.37 (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-$
 $5.71(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.68-1.62 (m, 2H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta} 141.1,137.8,131.9,130.2,130.1,127.6$, 122.6, 115.4, 35.8, 32.8, 30.9, 28.4 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$ 308.9709 , found 308.9709.

(4-Bromobenzyl)(pent-4-en-1-yl)sulfane 8d

Yield $176 \mathrm{mg}, 75 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.8(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}, \mathbf{C D C l}) \boldsymbol{\delta} 7.45(\mathrm{~d}, J=$
 $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\boldsymbol{\delta} 137.7,137.7,131.5,130.5,120.7,115.3,35.6,32.8,30.7,28.3 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+} 308.9709$, found 308.9709 .

3-((Pent-4-en-1-ylthio)methyl)benzaldehyde 8e

Yield $128 \mathrm{mg}, 67 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}$,
 $1 \mathrm{H}), 5.78-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.68-1.62 (m, 2H) ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta}$ 192.4, 140.1, 137.8, 136.8, 135.1, 129.9, 129.4, 128.7, 115.5, 35.9, 32.9, 30.9, 28.4 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+}$259.0553, found 259.0553.

4-((Pent-4-en-1-ylthio)methyl)benzaldehyde $8 f$

Yield $134 \mathrm{mg}, 70 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 9.99$ (s ,
 $1 \mathrm{H}) 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.74$ $(\mathrm{s}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.9,146.1,137.2,135.4,130.2,129.6,115.5,36.3,32.9,31.0,28.4 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+} 259.0553$, found 259.0553.

4-((Pent-4-en-1-ylthio)methyl)benzonitrile 8g

Yield $122 \mathrm{mg}, 65 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3(10 \% \mathrm{~N}$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.58$ (d, J
 $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.93(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.39$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $\boldsymbol{\delta} 144.5,137.6,132.4,129.6,118.8,115.4,110.9,36.1,32.7,30.9,28.3 \mathrm{ppm}$, HRMS (ESI,QToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaS}[\mathrm{M}+\mathrm{Na}]^{+} 240.0817$, found 240.0817.

Benzyl(hex-5-en-1-yl)sulfane 9a

Yield $130 \mathrm{mg}, 72 \%$, Appearance yellow liquid, $\boldsymbol{R}_{f}=0.9$ (1% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): \boldsymbol{\delta} 7.34-7.33(\mathrm{~m}, 4 \mathrm{H})$,
 7.31-7.23 (m, 1H) 5.85-5.75 (m, 1H), 5.04-4.96 (m, 2H), $3.72(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $\boldsymbol{\delta} 138.7,138.6,128.9,128.6,126.9,114.8,36.4,33.4,31.2,28.7,28.1 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$245.0761, found 245.0760.

(2-Bromobenzyl)(hex-5-en-1-yl)sulfane 9b

Yield $168 \mathrm{mg}, 68 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.8$ (1\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta} 7.59-7.57(\mathrm{~m}, 1 \mathrm{H})$, 7.40-7.39 (m, 1H), 7.31-7.27 (m, 1H), 7.15-7.11 (m, 1H), 5.84-5.77 (m,
 $1 \mathrm{H}), 5.05-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 2.53-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H})$, 1.53-1.47 (m, 2H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.6,138.2,133.2,130.8,128.6,127.5$, 124.6, 114.8, 36.6, 33.4, 31.7, 28.9, 28.2 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrKS}$ $[\mathrm{M}+\mathrm{K}]^{+} 322.9866$, found 322.9865 .

(4-Bromobenzyl)(hex-5-en-1-yl)sulfane 9c

Yield $182 \mathrm{mg}, 73 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.8(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}$): $\boldsymbol{\delta} 7.42$ (d,
 $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.81-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.39$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.5,137.8,131.6,130.6,120.8,114.8,35.7,33.3,31.3,28.6,28.1 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$322.9866, found 322.9865.

3-((Hex-5-en-1-ylthio)methyl)benzaldehyde 9d

Yield $128 \mathrm{mg}, 63 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 9.98$ (s, 1H), $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (t,
 $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$ $192.2,140.1,138.4,136.7,134.9,129.9,129.3,128.6,114.8,35.9,33.3,31.4,28.6,27.9 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$273.0710, found 273.0709.

4-((Hex-5-en-1-ylthio)methyl)benzaldehyde 9e

Yield $140 \mathrm{mg}, 69 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 9.93$
 ($\mathrm{s}, 1 \mathrm{H}$) $7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 2 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.39(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$,
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl ${ }_{3}$): $\boldsymbol{\delta} 191.6,145.9,138.3,135.2,129.9,129.4,114.7,36.1,33.2,31.3$, 28.5, 27.9 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$273.0710, found 273.0709.

4-((Hex-5-en-1-ylthio)methyl)benzonitrile 9f

Yield $128 \mathrm{mg}, 64 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.58(\mathrm{~d}$,
 $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.38$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 144.5,138.4,132.4,129.6,118.9,114.9,110.8,36.2,33.3,31.5,28.6,27.9$ ppm, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{KNS}[\mathrm{M}+\mathrm{K}]^{+} 270.0713$, found 270.0713.

Benzyl(prop-2-yn-1-yl)sulfane 10a

Yield $106 \mathrm{mg}, 75 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.8$ ($1 \% \mathrm{EtOAc}$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.42-7.37(\mathrm{~m}, \mathbf{4 H}), 7.34-$
 $7.31(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$: $\boldsymbol{\delta} 137.6,129.2,128.7,127.4,80.0,71.5,35.4,18.5 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $m / z:$ calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$163.0576, found 163.0575.

(4-Bromobenzy)(prop-2-yn-1-yl)sulfane 10b

Yield $156 \mathrm{mg}, 74 \%$, Appearance dark brown liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta} 7.44$ (d, $J=8.4$
 $\mathrm{Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$ ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 136.6,131.8,130.9,121.2,79.7,71.7,34.7,18.5 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+} 278.9240$, found 278.9240 .

3-((Prop-2-yn-1-ylthio)methyl)benzaldehyde 10c

Yield $101 \mathrm{mg}, 61 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}$,
 $1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 192.3,138.9,136.9$,
135.2, 130.3, 129.5, 128.9, 79.5, 71.9, 34.9, 18.7 ppm , HRMS (ESI,Q-ToF) m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+}$229.0084, found 229.0084.

4-((Prop-2-yn-1-ylthio)methyl)benzaldehyde 10d

Yield $114 \mathrm{mg}, 69 \%$, Appearance brown sticky liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 10.00(\mathrm{~s}, 1 \mathrm{H})$,
 7.85 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.93 (s, 2H), 3.08 (d, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.32 (t, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 191.9,144.9,135.6,130.2,129.9,79.5$, $71.9,35.2,18.7 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+} 229.0084$, found 229.0083.

4-((Prop-2-yn-1-ylthio)methyl)benzonitrile 10e

Yield $102 \mathrm{mg}, 63 \%$, Appearance brown sticky liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\boldsymbol{\delta} 7.62$ (d, $J=8.5$
 $\mathrm{Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$ ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta} 143.4,132.6,129.9,118.9,111.3,79.3,72.1,35.0,18.6$ ppm, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}$188.0528, found 188.0528 .

Benzyl(but-3-yn-1-yl)sulfane 11a

Yield $106 \mathrm{mg}, 71 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.8(1 \%$ EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.35-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{td}, J=7.2,2.0 \mathrm{~Hz}$,
 $2 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.2,128.9,128.6,127.2,82.7,69.6$, 36.3, 30.0, 19.6 ppm, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$215.0291, found 215.0291.

(4-Bromobenzyl)(but-3-yn-1-yl)sulfane 11b

Yield $148 \mathrm{mg}, 67 \%$, Appearance brown liquid, $\boldsymbol{R}_{f}=0.4$ (1% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.39$
 ($\mathrm{m}, 2 \mathrm{H}$), $2.04(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.2,131.7,130.6,121.0$,
82.6, 69.7, $35.8,30.0,19.7 \mathrm{ppm}$, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrS}[\mathrm{M}+\mathrm{H}]^{+}$ 254.9820 , found 254.9820 ,

3-((But-3-yn-1-ylthio)methyl)benzaldehyde 11c

Yield $110 \mathrm{mg}, 62 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4$ ($10 \% \mathrm{EtOAc}-$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.83$ (s, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}$,
 $1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta} 192.2,139.6,136.8,135.0,129.9,129.4,128.8,82.5,69.9,36.0$, 30.2, 19.7 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+}$243.0240, found 243.0240.

4-((But-3-yn-1-ylthio)methyl)benzaldehyde 11d

Yield $120 \mathrm{mg}, 68 \%$, Appearance brown liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}, \mathbf{C D C l} 3): ~ \boldsymbol{\delta} 9.99$ (s,
 $1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) 3.83(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-$ $2.43(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}$ 191.9, 145.6, 135.6, 130.3, 129.7, 82.5, 69.9, 36.4, 30.3, 19.8 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{KOS}$ $[\mathrm{M}+\mathrm{K}]^{+}$243.0240, found 243.0240 .

4-((But-3-yn-1-ylthio)methyl)benzonitrile 11e

Yield $110 \mathrm{mg}, 63 \%$, Appearance yellow sticky liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l 3}$): $\boldsymbol{\delta} 7.62$ (d, J
 $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.47-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 144.0$, 132.6, 129.8, 118.9, 111.2, 82.4, 69.9, 36.3, 30.3, 19.8 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{KNS}[\mathrm{M}+\mathrm{K}]^{+}$240.0243, found 240.0243.

Benzyl(ethyl)sulfane 12a

Yield $102 \mathrm{mg}, 77 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.5$ (1% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \boldsymbol{\delta} \mathbf{7 . 3 7 - 7 . 3 4 (\mathrm { m } , 4 \mathrm { H }) , 7 . 3 0 - 7 . 2 8}$
 $(\mathrm{m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{q}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5}$
$\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.7,128.9,128.5,126.9,35.9,25.3,14.5 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$191.0291, found 191.0291.

Ethyl(4-methylbenzyl)sulfane 12b

Yield $106 \mathrm{mg}, 73 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.8$ (1\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
 7.17 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 (s, 2H), 2.49 (q, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ (s, 3H), 1.29 (t, $J=7.4 \mathrm{~Hz}$, 3H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 136.5,135.6,129.2,128.8,35.6,25.2,21.1,14.5$ ppm, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$205.0448, found 205.0447.

4-((Ethylthio)methyl)benzaldehyde 12c

Yield $106 \mathrm{mg}, 68 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.5$ (10% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 9.99(\mathrm{~s}, 1 \mathrm{H})$,
 $7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.8,146.1,135.3,130.0,129.5,35.8$, 25.5, 14.4 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$181.0682, found 181.0681.

4-((Ethylthio)methyl)benzonitrile 12d

Yield $98 \mathrm{mg}, 63 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
 $7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{q}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 144.3,132.0,129.4,118.6,110.4,35.4,25.2,14.1 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{KNS}[\mathrm{M}+\mathrm{K}]^{+}$216.0243, found 216.0243.

Benzyl(butyl)sulfane 13a

Yield $110 \mathrm{mg}, 71 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.6$ ($1 \% \mathrm{EtOAc}$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): \boldsymbol{\delta} 7.41-7.37(\mathrm{~m}, 4 \mathrm{H})$,
 7.33-7.29 (m, 1H), $3.78(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 2 \mathrm{H})$, 0.98 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.7,128.8,128.4,126.8,36.2$, 31.3, 30.9, 21.9, 13.7 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+}$219.0604, found 219.0604.

4-((Butylthio)methyl)benzaldehyde 13b

Yield $124 \mathrm{mg}, 68 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \mathbf{\delta} 9.96$ (s ,
 $1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-$ $1.48(\mathrm{~m}, 2 \mathrm{H}) \quad 1.37-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$ 191.9, 146.1, 135.3, 130.0, 129.5, 36.2, 31.3, 31.2, 21.9, 13.7 ppm, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{KOS}[\mathrm{M}+\mathrm{K}]^{+} 247.0553$, found 247.0553.

4-((Butylthio)methyl)benzonitrile 13c

Yield $116 \mathrm{mg}, 65 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}$): $\boldsymbol{\delta} 7.56$ (d, J
 $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 2 \mathrm{H})$ 1.37-1.29 (m, 2H), $0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 144.4,132.1$, 129.4, 118.7, 110.5, 35.9, 31.1, 31.0, 21.8, 13.5 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{KNS}[\mathrm{M}+\mathrm{K}]^{+}$244.0557, found 244.0556.

(4-Bromobenzyl)(ethyl)sulfane 14a

Yield $152 \mathrm{mg}, 76 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (1% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$,
 $7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\boldsymbol{\delta}$ 137.7, 131.6, 130.6, 120.7, 35.3, 25.3, 14.4 ppm, HRMS (ESI,QToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$268.9396, found 268.9398.

(4-Bromobenzyl)(propyl)sulfane 14b

Yield $156 \mathrm{mg}, 73 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.6$ ($1 \% \mathrm{EtOAc}-$ petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.18$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.9,131.6,130.6,120.8,35.7,33.5,22.6$, 13.6 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$282.9553, found 282.9552.

(4-Bromobenzyl)(butyl)sulfane 14c

Yield $158 \mathrm{mg}, 70 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.6(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.43$ (d, $J=$
 $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.41-1.33 (m, 2H), $0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 137.8,131.6$, 130.6, 120.7, 35.7, 31.3, 31.2, 22.1, 13.8 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrKS}$ $[\mathrm{M}+\mathrm{K}]^{+} 296.9709$, found 296.9709 .

(4-Bromobenzyl)(pentyl)sulfane 14d

Yield $160 \mathrm{mg}, 67 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.6(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.45$ (d, J
 $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.38-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}, \mathbf{1 3 C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 137.9,131.6$, 130.6, 120.8, 35.8, 31.5, 31.1, 28.9, 22.4, 14.1 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+}$310.9866, found 310.9865.

(4-Bromobenzyl)(pentyl)sulfane 14e

Yield $164 \mathrm{mg}, 66 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.6$ (1\%
EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \mathbf{\delta} 7.45$
 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}$, $2 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 137.9$, 131.7, 130.7, 120.8, 35.8, 31.5, 31.5, 29.3, 28.7, 22.7, 14.2 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+} 325.0022$, found 325.0022.

Bis(4-methylbenzyl)sulfane 15a

Yield $162 \mathrm{mg}, 77 \%$, Appearance colorless solid, MP. $72-74{ }^{\circ} \mathrm{C}$, \boldsymbol{R}_{f} $=0.6$ (1% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$):
 $\boldsymbol{\delta} 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 2.49(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 136.5,135.2,129.2,128.9,35.3,21.2 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$243.1201, found 243.1201.

Bis(2-bromobenzyl)sulfane 15b

Yield $266 \mathrm{mg}, 82 \%$, Appearance white solid, MP. $66-68{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.5(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.56$ (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}$,
 2H),3.83 (s, 4H), ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l 3}$): $\boldsymbol{\delta} 137.4,133.2,130.9,128.8,127.6,124.8$, 36.6 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{KS}[\mathrm{M}+\mathrm{K}]^{+} 408.8658$, found 408.8658 .

Bis(2-bromobenzyl)sulfane 15c

Yield $282 \mathrm{mg}, 87 \%$, Appearance colorless solid, MP. 78-80 ${ }^{\circ} \mathrm{C}$, \boldsymbol{R}_{f} $=0.5\left(1 \%\right.$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$:
 $\boldsymbol{\delta} 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 4 \mathrm{H}), \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 136.5,131.8,131.2,121.7,42.7 \mathrm{ppm}$, $\mathbf{H R M S}$ (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{KS}$ $[\mathrm{M}+\mathrm{K}]^{+} 408.8658$, found 408.8658 .

3,3'-(Thiobis(methylene))dibenzaldehyde 15d

Yield $188 \mathrm{mg}, 80 \%$, Appearance white solid, $\mathbf{M p} 74-76^{\circ} \mathrm{C}, \mathbf{R}_{f}=0.4(15 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 9.98$ (s, $2 \mathrm{H}), 7.76-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{13}$ CNMR
 (100 MHz, CDCl $\mathbf{3}$): $\boldsymbol{\delta} 192.2,139.2,136.8,135.1,129.9,129.5,128.9,35.6 \mathrm{ppm}$, HRMS (ESI,QToF) m / z : calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$293.0607, found 293.0607.

4,4'-(Thiobis(methylene))dibenzaldehyde 15e

Yield $199 \mathrm{mg}, 85$ \% , Appearance White solid, Mp 108-110 ${ }^{\circ} \mathrm{C}, \mathbf{R}_{f}=0.4$ (15\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H N M R}$ (500

$\mathbf{M H z}, \mathbf{C D C l}_{3}$: $\boldsymbol{\delta} 9.99(\mathrm{~s}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm}$, ${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}\right.$, CDCl $\left._{3}\right): \boldsymbol{\delta} 191.9,145.1,135.6,130.2,129.8,35.7 \mathrm{ppm}$, HRMS (ESI,QToF) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$293.0612, found 293.0607.

4,4'-(Thiobis(methylene))dibenzonitrile $15 f$

Yield $182 \mathrm{mg}, 79 \%$, Appearance colorless solid, $\boldsymbol{R}_{f}=0.5(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.61$
 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$
143.3, 132.5, 129.8, 118.7, 111.3, 35.6 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NaN}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 371.0652$, found 371.0652 .

Benzyl(4-methylbenzyl)sulfane 16a

Yield $146 \mathrm{mg}, 74 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.8$ (1% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} \mathbf{7 3 9 - 7 . 3 5 (\mathrm { m } , 4 \mathrm { H }) \text { , }}$
 7.32-7.28 (m, 1H), $7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 138.4,136.7,135.1,129.3,129.1,129.0,128.6$, 127.1, 35.7, 35.4, 21.3 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$229.1040, found 229.1040.

Benzyl(4-methylbenzyl)sulfane 16b

Yield $202 \mathrm{mg}, 79 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (1% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.46$ (d, $J=$
 $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C N M R}$ ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.9,137.3,131.7,130.8,129.1,128.6,127.2,120.9,35.7,35.0 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrKS}[\mathrm{M}+\mathrm{K}]^{+} 330.9553$, found 330.9553.

3-((Benzylthio)methyl)benzaldehyde 16c

Yield $162 \mathrm{mg}, 77 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (10\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): \boldsymbol{\delta} 9.99$ (s, 1H), 7.76 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}$,
 $5 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 2 \mathrm{H}), \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 192.1,139.5,137.7,136.6$, 135.0, 130.1, 129.2, 128.9, 128.6, 128.5, 127.2, 35.8, 35.1 sppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 243.0835$, found 243.0835 .

4-((Benzylthio)methyl)benzaldehyde 16d

Yield 168 mg , 80\%, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.5(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 9.99$ ($\mathrm{s}, 1 \mathrm{H}$),
 7.82 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ (d, $J=7.6,2 \mathrm{H}$), 7.34-7.27 (m 5H), 3.64 (s, 2H), 3.61 (s, 2H) ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.8,145.6,137.7,135.3 .129 .9,129.7,129.0,128.6,127.2$,
35.8, 35.5 ppm , HRMS (ESI,Q-ToF) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$243.0835, found 243.0835 .

4-(((4-Bromobenzyl)thio)methyl)benzaldehyde 17

Yield 248 mg , 89\%, Appearance brown solid, MP. 58-60 ${ }^{\circ} \mathrm{C}$, \boldsymbol{R}_{f} $=0.5$ (10% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$,
 CDCl $_{3}$): $\boldsymbol{\delta} 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0,4 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4,2 \mathrm{H}), 3.59$ (s, 2H), 3.51 ($\mathrm{s}, 2 \mathrm{H}$) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta}$ 191.6, 145.1, 136.7, 135.3, 131.6, 130.6, 129.9, 129.5, 120.9, 35.4, 35.0 ppm , HRMS (ESI,Q-ToF) $\mathbf{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrOS}$ $[\mathrm{M}+\mathrm{H}]^{+} 322.9925$, found 322.9925 .

4-(((4-Bromobenzyl)thio)methyl)benzaldehyde 18

Yield $176 \mathrm{mg}, 80 \%$, Appearance white solid, MP. $64-66^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=$ 0.4 (10 \% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$):

$\boldsymbol{\delta} 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H})$, 2.37 (s, 3H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l 3}$): $\boldsymbol{\delta}$ 144.1, 136.9, 134.3, 132.3, 129.7, 129.3, 128.9, $118.9,110.8,35.5,35.2,21.1 \mathrm{ppm}$, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaS}[\mathrm{M}+\mathrm{Na}]^{+}$ 276.0817, found 276.0816.

General procedure for the synthesis of dithio/disulfinyl compound

To the solution of bromomethyl benzaldehyde (1 equiv.) and potassium thioacetate (1 equiv.) in methanol (10 mL) in a two-neck round-bottom flask, stirred at room temperature for 2 h . After consumption of starting material, potassium carbonate, (3 equiv.) was added and the resulting reaction mixture was allowed to stir for 10 min . Further, dibromo compound (0.5 equiv.) was transferred to the reaction mixture and stirred at room temperature for 3 h . After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was separated, washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the dithio/disulfinyl compounds. (Reactions were carried out in 100 mg scale)

4-(((4-Bromobenzyl)thio)methyl)benzaldehyde 19a
Yield $146 \mathrm{mg}, 61 \%$, Appearance colorless sticky liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (1% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.34-$ 7.24 (m, 10H), 3.69 ($\mathrm{s}, 4 \mathrm{H}$), 3.58 ($\mathrm{s}, 4 \mathrm{H}$) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~}$
 $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.3,128.9,128.7,127.2,36.4,31.1 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\mathbf{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+} 313.0482$, found 313.0481.

1,2-Bis((4-methylbenzyl)thio)ethane 19b

Yield 156 mg , 59\%, Appearance colorless solid, MP. 96$98{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.3$ (1% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} \quad 7.17-7.10(\mathrm{~m}, 8 \mathrm{H}), 3.66(\mathrm{~s}, 4 \mathrm{H}), 2.56(\mathrm{~s}$,
 4H), 2.34 (s, 6H) ppm, 13C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 136.9,135.2,129.4,128.9,36.1,31.2$, $21.3 \mathrm{ppm}, \mathbf{H R M S}(\mathbf{E S I}, \mathbf{Q}-\mathbf{T o F}) \boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+} 341.0795$, found 341.0794.

1,2-Bis((2-Bromobenzyl)thio)ethane 19c

Yield $274 \mathrm{mg}, 73 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3(1 \%$ EtOAc-petroleum ether), ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.58$ (s, 2H), 7.37-7.28 (m, 4H), 7.13 ($\mathrm{s}, 2 \mathrm{H}$), 3.87 ($\mathrm{s}, 4 \mathrm{H}$), 2.71 (s, 4H) ppm,
 ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.7,133.2,130.8,128.8,127.7,124.6,36.6,31.7 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+} 468.8692$, found 468.8692 .

1,2-Bis((3-bromobenzyl)thio)ethane 19d

Yield 292 mg , 78%, Appearance colorless solid, MP. $72-74{ }^{\circ} \mathrm{C}$, \boldsymbol{R}_{f} $=0.3\left(1 \%\right.$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$ 7.45 (s, 2H), 7.39-7.37 (m, 2H), 7.21-7.17 (m, 4H), 3.64 (s, 4H), 2.56 (s, 4H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 140.6,131.8,130.3$,
 130.2, 127.5, 122.7, 35.9, 31.2 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+}$ 468.8692, found 468.8693.

3,3'-((Ethane-1,2-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 19e
Yield $204 \mathrm{mg}, 71 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3(10 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 9.99$ (s, 2H) 7.79-7.76 (m, 4H), 7.57-7.47 (m, 4H), 3.76 ($\mathrm{s}, 4 \mathrm{H}$), 2.58 (s, 4H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$): $\boldsymbol{\delta}$ 192.1, 139.5, 136.7, 134.9, 129.7, 129.4, 128.8, 35.9, 31.2 ppm, HRMS (ESI,Q-ToF)
 m / z : for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$353.0640, found 353.0640.

4,4'-((Ethane-1,2-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 19f

Yield 198 mg , 69\%, Appearance colorless solid, MP. $106-108{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{\boldsymbol{f}}=0.4$ (20\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3): $\boldsymbol{\delta} 9.99$ (s, 2H), 7.81 (d, $J=$
 $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 2.56(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.9,145.4,135.5,130.2,129.6,36.4,31.3 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 353.0640$, found 353.0640.

4,4'-((Ethane-1,2-diylbis(sulfanediyl))bis(methylene))dibenzonitrile $\mathbf{1 9 g}$
Yield 184 mg , 65\%, Appearance colorless solid, MP. 104$106{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.4$ (20% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.59$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.38 (d, $J=$
 $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 2.55(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 143.8,132.5,129.6$, 118.7, 111.1, 36.3, 31.2 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 347.0647, found 347.0647.

1,2-Bis((4-bromobenzyl)thio)ethane 20a

Yield 324 mg , 86\%, Appearance colorless solid, MP. 94-96 ${ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
 $4 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 2.54(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.3,131.8,130.6,121.1$, 35.9, 31.2 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+} 468.8692$, found 468.8691 .

1,3-Bis((4-bromobenzy)thio)propane 20b

Yield $322 \mathrm{mg}, 83 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$,
 CDCl3): $\boldsymbol{\delta} 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 2.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H})$, 1.79-1.72 (m, 2H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta} 137.6,131.7,130.6,120.9,35.8,30.3$, 28.7 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+} 482.8848$, found 482.8848 .

1,4-Bis((4-bromobenzyl)thio)butane 20c

Yield $308 \mathrm{mg}, 77 \%$, Appearance colorless solid, MP. $74-76{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$
NMR (500 MHz, CDCl ${ }_{3}$): $\boldsymbol{\delta} 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$,
 $7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), 2.35(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$): $\boldsymbol{\delta} 137.7,131.7,130.7,120.9,35.8,30.9,28.1 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+} 496.9004$, found 496.9004.

1,5-Bis((4-Bromobenzyl)thio)pentane 20d

Yield $314 \mathrm{mg}, 76 \%$, Appearance colorless sticky liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (5% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$
 (500 MHz, CDCl3): $\boldsymbol{\delta} 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 2.39(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.7$, 131.6, 130.6, 120.7, 35.7, 31.2, 28.7, 27.9 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{KS}_{2}$ $[\mathrm{M}+\mathrm{K}]^{+} 510.9161$, found 510.9161.

(E)-1,4-Bis(benzylthio)but-2-ene 21a

Yield $200 \mathrm{mg}, 71 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.3(5 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.37$ $7.36(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.56-5.54(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H})$,
 3.08-3.07 (m, 4H) ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.3,129.2,129.1,128.6,127.1,35.3$, 32.9 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+}$339.0638, found 339.0638.

(E)-1,4-Bis((4-bromobenzyl)thio)but-2-ene 21b

Yield $326 \mathrm{mg}, 82 \%$, Appearance white solid, MP. 84-86 ${ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ MHz, CDCl3): $\boldsymbol{\delta} 7.46$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=$
 $7.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}), 3.03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.4,131.8,130.8,129.2,121.0,34.8,32.9 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{KS}_{2}[\mathrm{M}+\mathrm{K}]^{+} 494.8848$, found 494.8848.
(E)-4,4'-((But-2-ene-1,4-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 21c

Yield $326 \mathrm{mg}, 72 \%$, Appearance colorless solid, MP. 102-104 ${ }^{\circ} \mathrm{C}, \boldsymbol{R}_{\boldsymbol{f}}=0.3$ (15% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$): $\boldsymbol{\delta} 9.99$ ($\mathrm{s}, 2 \mathrm{H}$),
 $7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.49(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 3.02(\mathrm{~d}, J$ $=5.5 \mathrm{~Hz}, 4 \mathrm{H}$), ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.9,145.6,135.5,130.2,129.8,129.2$, 35.3, 33.1 ppm , HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$379.0797, found 379.0796.
(E)-4,4'-((But-2-ene-1,4-diylbis(sulfanediyl))bis(methylene))dibenzonitrile 21d

Yield 204 mg, 67\%, Appearance white solid, MP. 98$100{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.3$ (15% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta} \quad 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$,
 7.43 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.49-5.48(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}$, 4H), 3.03-3.02 (m, 4H), ppm, ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta} 143.9,132.4,129.8,129.0,118.8$, 110.9, 35.1, 32.9 ppm , HRMS (ESI,Q-ToF) $\mathbf{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaN}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$373.0806, found 373.0806 .

1,4-Bis(benzylthio)but-2-yne 22a

Yield $202 \mathrm{mg}, \mathbf{7 8 \%}$, Appearance dark brown liquid, $\boldsymbol{R}_{f}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}$
 7.39-7.34 (m, 8H), 7.30-7.27 (m, 2H), 3.91 (s, 4H), 3.19 (s, 4H) ppm, ${ }^{13} \mathbf{C} \mathbf{N M R}$ ($\mathbf{1 0 0} \mathbf{~ M H z , ~}$ $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 137.7,129.1,128.7,127.3,79.2,35.6,19.2 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 299.0928$, found 299.0928.

1,4-Bis((4-bromobenzyl)thio)but-2-yne 22b

Yield $322 \mathrm{mg}, 81 \%$, Appearance colorless solid, MP. $104-106{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3): $\boldsymbol{\delta} 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$,
 $7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H}), 3.13(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 136.8$, 131.8, 130.8, 121.2, 79.2, 35.1, 19.2 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 456.9106$, found 456.9107 .

4,4'-((But-2-yne-1,4-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 22c
Yield 230 mg, 75\%, Appearance brown solid, MP. $136-138{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.2$ (15% EtOAc-petroleum ether), ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl3 $_{3}$): $\boldsymbol{\delta} 10.00$ ($\mathrm{s}, 2 \mathrm{H}$), 7.85
 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 4 \mathrm{H}), 3.16(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.9,144.9,135.6,130.2,129.8,79.2,35.5,19.3 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 377.0642$, found 377.0643,

4,4'-((But-2-yne-1,4-diylbis(sulfanediyl))bis(methylene))dibenzonitrile 22d
Yield 196 mg , 65\%, Appearance white fluffy solid, MP. $130-132{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.2$ (15% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.60(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}$), $7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H}), 3.13(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$): $\boldsymbol{\delta} 143.3,132.5,129.8,118.8,111.2,79.1,35.4,19.3 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NaN}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 371.0652$, found 371.0652,

1,4-Bis((benzylthio)methyl)benzene 23a

Yield 230 mg, 76\%, Appearance colorless solid, MP. 60-62 ${ }^{\circ} \mathrm{C}, \mathbf{R}_{f}=0.7$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H N M R}$ (400
 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.36-7.26(\mathrm{~m}, 14 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), \mathrm{ppm},{ }^{13} \mathbf{C N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.3,136.9,129.2,129.1,128.6,127.1,35.8,35.4 \mathrm{ppm}$, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 351.1237$, found 351.1237.

1,4-Bis(((4-bromobenzyl)thio)methyl)benzene 23b

Yield $350 \mathrm{mg}, 79 \%$, Appearance brown solid, MP. $108-110{ }^{\circ} \mathrm{C}, \mathbf{R}_{f}=0.4$ (5\% EtOAc-petroleum ether),
 ${ }^{1}$ HNMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.43$ (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.21 (s, 2H), $7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 3.57 ($\mathrm{s}, 4 \mathrm{H}$), $3.55(\mathrm{~s}, 4 \mathrm{H}), \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 137.3,136.9,131.7,130.8,129.3$, 120.9, 35.5, 35.2, ppm, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 508.9424$, found 508.9424.

4,4'-(((1,4-Phenylenebis(methylene))bis(sulfanediyl))bis(methylene))dibenzaldehyde 23c
Yield $258 \mathrm{mg}, 73 \%$, Appearance Colorless solid, онс MP. $134-136^{\circ} \mathrm{C}, \mathbf{R}_{f}=0.4(15 \%$ EtOAc-petroleum
 ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 9.99(\mathrm{~s}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 4H), 7.21 (s, 4H), $3.65(\mathrm{~s}, 4 \mathrm{H}), 3.59(\mathrm{~s}, 4 \mathrm{H}), \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$ 191.9, 145.6, 136.8, 135.5, 130.2, 129.8, 129.3, 35.8, 35.6, ppm, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 429.0953$, found 429.0953 .

4,4'-(((1,4-Phenylenebis(methylene))bis(sulfanediyl))bis(methylene))dibenzonitrile 23d
Yield 230 mg , 66\%, Appearance colorless solid, MP. 156-158 ${ }^{\circ} \mathrm{C}, \mathbf{R}_{f}=0.4$ (15% EtOAc-petroleum
 ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\boldsymbol{\delta} 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.19$ (s, 4H), $3.62(\mathrm{~s}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 4 \mathrm{H}), \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 144.0,136.7,132.4,129.8$, 129.3, 118.9, 111.0, 35.7(2-CH2 peaks merge) ppm, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NaN}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 423.0963$, found 423.0963.
((2,5-Dimethoxy-1,4-phenylene)bis(methylene))bis(benzylsulfane) 24a
Yield $242 \mathrm{mg}, 68 \%$, Appearance colorless solid, MP. 106$108{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.37-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.78$ (s, 2H), $3.79(\mathrm{~s}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl3): $\boldsymbol{\delta} 151.3,138.6,129.1,128.5,127.0,126.2,113.5,56.3,36.4,30.2 \mathrm{ppm}$, HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 433.1265$, found 433.1265 .
((2,5-Dimethoxy-1,4-phenylene)bis(methylene))bis((4-bromobenzyl)sulfane) 24b
Yield 346 mg, 70\%, Appearance colorless solid, MP.
$122-124{ }^{\circ} \mathrm{C}, \mathbf{R}_{f}=0.2$ (5% EtOAc-petroleum ether), ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3): $\boldsymbol{\delta} 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.19 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$,
 3.63 (s, 8H), ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 151.3,137.7,131.6,130.8,126.1,120.7$, $113.5,56.3,35.8,30.2$, ppm, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NaBr}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 590.9452 , found 590.9453.

4,4'-(()(2,5-Dimethoxy-1,4-

phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))dibenzaldehyde 24c
Yield 260 mg, 64\%, Appearance yellow solid,
MP. $136-138{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.4$ (15% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$):反 9.99 ($\mathrm{s}, 2 \mathrm{H}$), 7.83 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.48$ (d,

$J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 192.0,151.3,146.0,135.4,130.1,129.7,126.1,113.5,56.3,36.4,30.3 \mathrm{ppm}$, HRMS (ESI,Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 489.1165$, found 489.1164 .

4,4'-(()(2,5-Dimethoxy-1,4-

phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))dibenzonitrile 24d
Yield $244 \mathrm{mg}, 85 \%$, Appearance colorless solid, MP. $150-152{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.4$ (15% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\boldsymbol{\delta} 7.59$ (d, $J=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H})$,

3.75 (s, 6H), $3.71(\mathrm{~s}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}$ 151.4, 144.5, 132.4, 129.8, 126.0, 119.0, 113.5, 110.9, 56.3, 36.3, 30.4, ppm, HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 461.1352$, found 461.1350 .

Procedure for the synthesis of sulfone 25

To the solution of sulfide 2 (1 equiv., 100 mg) in methanol (10 mL) in a two-neck round-bottom flask, we added Oxone ${ }^{\circledR}$ (2.2 equiv., 588 mg) in water dropwise in the reaction mixture at room temperature and allowed the reaction mixture to stir for 3 h . After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was separated, washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the pure compound $\mathbf{2 5}$.

((Allylsulfonyl)methyl)benzene 25

Yield 106 mg , 89\% from 50 mg of compound 2, Appearance yellow liquid, $\boldsymbol{R}_{f}=0.5\left(25 \%\right.$ EtOAc-petroleum ether), ${ }^{1} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$,
 CDCl $\left._{3}\right): ~ \delta 7.39(\mathrm{~s}, 5 \mathrm{H}), 5.95-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.38(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 130.8,129.1,129.1,127.7,124.9,124.9,57.9,55.9$ ppm, HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 219.0450$ found 219.0451.

General procedure for the synthesis of sulfoxides

To the solution of benzylbromides (1 equiv.) and potassiumthioacetate (1 equiv.) in methanol (10 mL) in a two-neck round-bottom flask, stirred at room temperature for 2 h . After consumption of starting material, potassium carbonate, (3 equiv.) was added and the resulting reaction mixture was allowed to stir for 10 min . Further, bromo compound (1 equiv.) was transferred to the reaction mixture and stirred at room temperature for 3 h . After completion of the reaction (TLC monitoring), for sulfoxide preparation, we added Oxone ${ }^{\circledR}$ (2.2 equiv.) in water dropwise in the same reaction mixture at room temperature and further allowed the reaction mixture to stir for next 3 h . After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate (3×10 mL). The organic layer was separated, washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the sulfoxide compounds. (Reactions were carried out in 100 mg scale)

((Allylsulfinyl)methyl)benzene 26a

Yield $120 \mathrm{mg}, 76 \%$ from 50 mg of compound 1, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (30\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.38-$
 $7.29(\mathrm{~m}, 5 \mathrm{H}), 5.97-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.38(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.29-$ $3.25(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 130.1,129.9,129.0,128.4,125.8,123.8,56.9$, 54.2 ppm , HRMS (ESI,Q-ToF) m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 181.0682$ found 181.0681.

1-((Allylsulfinyl)methyl)-4-methylbenzene 26b

Yield $121 \mathrm{mg}, 73 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.3(30 \%$ EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.17$ (s, 4H), 5.96-5.85
 $(\mathrm{m}, 1 \mathrm{H}), 5.47-5.36(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.34$ (s, 3H) ppm, ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 138.4,130.1,129.8,126.8,125.9,123.8,56.6,54.1$, 21.3 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 195.0838$ found 195.0838 .

1-((Allylsulfinyl)methyl)-2-bromobenzene 26c

Yield $170 \mathrm{mg}, \mathbf{7 5 \%}$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$): $\boldsymbol{\delta} 7.59$ (dd, $J=8.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$
 $(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.39(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=13.0,1 \mathrm{H}), 4.01(\mathrm{~d}, J$ $=12.5,1 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 133.3$, 132.6, 130.6, 130.2, 128.0, 125.9, 125.1, 123.9, 57.9, 55.5 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+} 258.9787$ found 258.9786 .

1-((Allylsulfinyl)methyl)-3-bromobenzene 26d

Yield $176 \mathrm{mg}, 78 \%$, Appearance colorless liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.43-7.40(\mathrm{~m}, \mathbf{2 H}), 7.19-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.33(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=13.0,1 \mathrm{H})$,
 $3.82(\mathrm{~d}, J=13.0,1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$): $\boldsymbol{\delta} 132.9,132.4,131.4,130.4,128.8,125.5,123.9,122.8,55.9,54.6 \mathrm{ppm}$, HRMS (ESI, \mathbf{Q}-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+} 258.9787$ found 258.9788 .

1-((Allylsulfinyl)methyl)-4-bromobenzene 26e

Yield $182 \mathrm{mg}, 81 \%$, Appearance white solid, MP. $98-100^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.2$ (20% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.42$ (d,
 $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4, \mathrm{~Hz}, 2 \mathrm{H}), 5.89-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.30(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=$ $13.2,1 \mathrm{H}), 3.79(\mathrm{~d}, J=13.2,1 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 131.9,131.7,129.0,125.6,123.8,122.5,55.8,54.5 \mathrm{ppm}$, HRMS (ESI, QToF) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+} 258.9787$ found 258.9786 .

4-((Allylsulfinyl)methyl)benzaldehyde 26f

Yield $132 \mathrm{mg}, 73 \%$, Appearance white solid, MP. $72-74{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 10.02$
 ($\mathrm{s}, 1 \mathrm{H}$), $7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.98-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.39(\mathrm{~m}, 2 \mathrm{H})$, $4.08(\mathrm{~d}, J=12.8,1 \mathrm{H}), 3.98(\mathrm{~d}, J=13.2,1 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl3): δ 191.7, 137.0, 136.3, 130.9, 130.2, 125.6, 124.2, 56.6, 55.0 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 209.0631$ found 209.0630.

4-((Allylsulfinyl)methyl)benzonitrile 26g

Yield $120 \mathrm{mg}, 68 \%$, Appearance white solid, MP. $82-84^{\circ} \mathrm{C}, \boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.63$ (d,
 $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.93-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.36(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=$ $12.0,1 \mathrm{H}), 3.89(\mathrm{~d}, J=12.8,1 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.30(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}$, CDCl3 $_{3}$: $\boldsymbol{\delta} 135.7,132.5,130.9,125.3,124.3,118.4,112.2,56.1,55.1 \mathrm{ppm}$, HRMS (ESI, Q-ToF) m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 206.0634$ found 206.0634.

((Propa-1,2-dien-1-ylsulfinyl)methyl)benzene 27a

Yield $102 \mathrm{mg}, 72 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30\% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): ~ \boldsymbol{\delta} 7.40-7.34(\mathrm{~m}, 3 \mathrm{H})$,
 7.31-7.29 (m, 2H), $5.90(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=$ $12.8,1 \mathrm{H}), 4.06(\mathrm{~d}, J=12.4,1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} \mathbf{2 0 7 . 1}, 130.5,129.5$, 128.9, 128.5, 98.2, 82.0, 61.2 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+}$ 201.0345 found 201.0344.

1-Methyl-4-((propa-1,2-dien-1-ylsulfinyl)methyl)benzene 27b

Yield $118 \mathrm{mg}, 71 \%$, Appearance brown liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2(30 \%$
EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \boldsymbol{\delta} 7.17$ (s, $4 \mathrm{H}), 5.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H})$,
 $4.09(\mathrm{~d}, J=12.5,1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.5,1 \mathrm{H}) 2.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l} 3): \boldsymbol{\delta}$ 207.2, 138.5, 130.4, 129.9, 129.7, 126.3, 98.3, 82.1, 60.9, 21.4 ppm, HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 193.0682$ found 193.0681.

1-Bromo-4-((propa-1,2-dien-1-ylsulfinyl)methyl)benzene 27c
Yield $168 \mathrm{mg}, 76 \%$, Appearance yellow sticky liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}$
 $7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $\boldsymbol{\delta} 207.3,132.2,132.1,128.5,122.9,98.1,82.4,60.3 \mathrm{ppm}$, HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$: calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+} 256.9630$ found 256.9632 .

4-((Propa-1,2-dien-1-ylsulfinyl)methyl)benzaldehyde 27d

Yield $134 \mathrm{mg}, 69 \%$, Appearance yellow sticky solid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta}$
 $9.99(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.89(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl3): $\boldsymbol{\delta} 207.2,191.8,136.2,136.2,131.2,130.0,98.1,82.5,60.6 \mathrm{ppm}$, HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 207.0474$ found 207.0474.

4-((Propa-1,2-dien-1-ylsulfinyl)methyl)benzonitrile 27e

Yield $114 \mathrm{mg}, 65 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (35\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.65$
 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H})$ ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 207.2,134.9,132.4,131.3,118.5,112.4,98.0,82.7,60.2$ ppm, HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NNaOS}[\mathrm{M}+\mathrm{Na}]^{+} 226.0297$ found 226.0297.

1-bromo-4-((prop-2-yn-1-ylsulfinyl)methyl)benzene 28

Yield $20 \mathrm{mg}, 21 \%$, Appearance brown solid, MP. 104-106 ${ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=$ 0.3 (30\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~ C D C l ~} \mathbf{3}$): $\boldsymbol{\delta}$
 $7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 132.3, 132.1, 127.8, 123.2, 77.3, 72.6, 55.2, 40.0 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+} 256.9630$ found 256.9631 .

4-((Prop-2-yn-1-ylsulfinyl)methyl)benzonitrile 29

Yield $26 \mathrm{mg}, 15 \%$, Appearance yellow solid, MP. 146-148 ${ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=$ 0.3 ($\mathbf{3 5 \%}$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$
 $7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 134.3$, 132.7, 131.3, 118.5, 112.7, 77.6, 72.4, 55.4, 40.5 ppm , HRMS (ESI, Q-ToF) m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 204.0478$ found 204.0477.

1-Bromo-4-((but-3-en-1-ylsulfinyl)methyl)benzene 30

Yield $172 \mathrm{mg}, \mathbf{7 2 \%}$, Appearance colorless sticky solid, $\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (30\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.49$ (d, $J=$
 $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 2.65-$ $2.61(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 134.9,132.3,131.8$, 128.9, 122.8, 117.4, 57.6, 50.3, 26.8 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrKOS}$ $[\mathrm{M}+\mathrm{K}]^{+} 310.9502$ found 310.9501 .

1-Bromo-4-((pent-4-en-1-ylsulfinyl)methyl)benzene 31

Yield $172 \mathrm{mg}, 69 \%$, Appearance yellow solid, MP. $164-166^{\circ} \mathrm{C}$, $\boldsymbol{R}_{f}=0.3$ (30% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}$,
 CDCl $_{3}$): $\delta 7.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.76-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.99(\mathrm{~m}$, $2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 136.8,132.2,131.8,129.1,122.7,116.3,57.5,50.4,32.7,21.8 \mathrm{ppm}$, HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNaOS}[\mathrm{M}+\mathrm{Na}]^{+} 308.9919$ found 308.9919.

1-((benzylsulfinyl)methyl)-4-methylbenzene 32a

Yield $190 \mathrm{mg}, 88$ \%, Appearance white solid, MP. $96-98{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=$ 0.3 (30\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$
 7.41-7.35 (m, 3H), 7.32-7.29 (m, 2H), 7.19 (s, 3H), 3.95-3.84 (m, 4H), $2.37(\mathrm{~s}, 3 \mathrm{H}), \mathrm{ppm},{ }^{13} \mathbf{C}$

NMR (100 MHz, CDCl3): $\boldsymbol{\delta} 138.2,130.3,130.2,130.0,129.7,128.9,128.3,126.9,57.1,56.9$,
21.2 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 245.0995$ found 245.0994 .

1-((Benzylsulfinyl)methyl)-3-bromobenzene 32b
Yield $250 \mathrm{mg}, 93 \%$, Appearance white solid, MP. $90-92^{\circ} \mathrm{C}, \boldsymbol{R}_{\boldsymbol{f}}=$ 0.3 (30\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta}$
 7.46-7.43 (m, 1H), 7.39-7.34 (m, 4H), 7.28-7.20 (m, 4H), 3.92 (s, 2H), 3.85 (d, J= $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 133.0,132.6,131.5,130.4$, 130.1, 129.8, 129.1, 128.9, 128.5, 122.8, 57.6, 56.4 ppm , HRMS (ESI, Q-ToF) $m / z:$ calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrNaOS}[\mathrm{M}+\mathrm{Na}]^{+} 330.9763$ found 330.9762 .

4-((Benzylsulfinyl)methyl)benzaldehyde 32c

Yield $200 \mathrm{mg}, 89 \%$, Appearance white solid, MP. $134-136^{\circ} \mathrm{C}$, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (30% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$,
 CDCl $_{3}$): $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H})$, 7.28-7.26 (m, 2H), 3.98-3.94 (m, 3H), $3.83(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\boldsymbol{\delta} 191.7,137.2,136.1,130.9,130.1,129.7,129.1,128.6,57.9,56.8 \mathrm{ppm}$, HRMS (ESI, Q-ToF) $m / z:$ calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 259.0787$ found 259.0787.

4-((Benzylsulfinyl)methyl)benzonitrile 32d

Yield $180 \mathrm{mg}, 81 \%$, Appearance white solid, MP. 126-128 ${ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=$ 0.2 ($\mathbf{3 5 \%}$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}): \boldsymbol{\delta}$
 $7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 135.9,132.6,131.0,130.1,129.5,129.2$, 128.7, 118.5, 112.3, 58.1, 56.5 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$ 256.0791 found 256.0790 .

4-(((4-Methylbenzyl)sulfinyl)methyl)benzonitrile 33a

Yield $194 \mathrm{mg}, 82 \%$, Appearance white solid, MP. 108-110 ${ }^{\circ} \mathrm{C}$, $\boldsymbol{R}_{\boldsymbol{f}}=0.1$ (30% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$,
 CDCl $\left._{3}\right): \delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 4 \mathrm{H}), 3.98-3.89(\mathrm{~m}$, $3 \mathrm{H}), 3.77(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) 2.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 138.8,136.1$, 132.6, 131.1, 130.0, 129.9, 126.3, 118.5, 112.3, 57.9, 56.4, 21.3 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 270.0947$ found 270.0947.

4-(((4-Bromobenzyl)sulfinyl)methyl)benzonitrile 33b

Yield $246 \mathrm{mg}, 85 \%$, Appearance white solid, MP. $162-164{ }^{\circ} \mathrm{C}$, $\boldsymbol{R}_{\boldsymbol{f}}=0.1$ (30% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$,
 $\left.\mathbf{C D C l}_{3}\right): \delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), \quad 3.95-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 135.7, 132.6, 132.3, 131.8, 131.0, 128.6, 123.0, 118.4, 112.4, 57.2, 56.8 ppm, HRMS (ESI, QToF) $\boldsymbol{m} / \boldsymbol{z}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrNOS}[\mathrm{M}+\mathrm{H}]^{+} 333.9896$ found 333.9895.

4-(((3-formylbenzyl)sulfinyl)methyl)benzonitrile 33c

Yield $216 \mathrm{mg}, 87 \%$, Appearance white solid, MP. 124-126 ${ }^{\circ} \mathrm{C}$,
$\boldsymbol{R}_{\boldsymbol{f}}=0.1$ (30% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$,
$\left.\mathbf{C D C l}_{3}\right): \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.62$
(m, 2H), 7.55-7.53 (m, 2H), 7.38 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.84$ (m, 2H) ppm,
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 191.8,136.9,136.1,135.5,132.6,131.1,130.9,130.9,130.1$, 129.8, 118.4, 112.4, 57.0, 56.9 ppm , HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 284.0739 found 284.0738.

Identidication of sulfides, sulfoxides and sulfones.

The confirmation of sulfoxide as the product was confirmed by the comparison of NMR spectral and mass data of sulfur, sulfoxide and sulfone. The unique characteristic of sulfoxide is that the sulfur atom is a stereogenic centre when different groups are attached on both the sides and it assumes a tetrahedral sp^{3} hybridization with a lone pair occupying one of the sp^{3} orbitals. ${ }^{2}$ Therefore, proton attached to the carbon adjacent to sulfoxide group are
diastereotopic protons and hence further splitting is observed which is absent in sulfides and sulfones (Figure 1). This property led us to the confirmation that sulfoxides indeed are obtained as the product.

Figure 1. Comparison of chemical shift values (δ, ppm) and splitting pattern in ${ }^{1} \mathrm{H}$ NMR of sulfur, sulfoxide and sulfone derivatives.

Preparation of precursors for late-stage functionalization

We prepared bromo derivative of citronellol $\mathbf{S 1}$ by using PBr_{3} as a brominating agent in diethylether. ${ }^{3}$ We prepared bromo derivatives of thymol (37a and 37c), Vitamin E (37b) and estrone (37d) by using dibromo derivatives (e.g. 1, 3-dibromopropane and 1,4bis(bromomethyl)benzene) in the presence of potassium carbonate and DMF (Scheme 2). ${ }^{4}$

From Thymol, S3c, 79\%
From Estrone, S3d, 81\%

Scheme 2. Synthesis of bromo derivatives of biologically active compounds.

Synthesis and spectral data of compound $\mathbf{S 1}$ has been reported. ${ }^{2}$

General procedure for the synthesis of bromo derivatives (S3) of biologically active compounds

To the solution of biologically active compound (1 equiv.) in DMF (10 mL) in a two-neck roundbottom flask, we added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 equiv.) in reaction mixture at room temperature. Further, we allowed the reaction mixture to stir for 30 min . followed by addition of dibromoderivative (1.1 equiv.). The reaction mixture was stirred for overnight. After completion of reaction (TLC monitoring), the reaction mixture was diluted with water and extracted with ethyl acetate (3×10 mL). The organic layer was separated, washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then the filterate was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the bromoderivative of biologically active compounds. (Reactions were carried out in 100 mg scale)

2-(3-bromopropoxy)-1-isopropyl-4-methylbenzene S3a

Yield $150 \mathrm{mg}, 83 \%$, Appearance colorless sticky solid, $\boldsymbol{R}_{f}=0.8$ (petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \boldsymbol{\delta} 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{~d}$,
 $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 155.8,136.5,134.1,126.0,121.5,112.4$, 65.3, 32.8, 30.4, 26.7, 22.9, 21.5 ppm , HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrNaO}$ $[\mathrm{M}+\mathrm{Na}]^{+} 293.0511$ found 293.0512.

Spectral data of compound S3b has been reported. ${ }^{3}$

2-((4-(bromomethyl)benzyl)oxy)-1-isopropyl-4-methylbenzene S3c

Yield $175 \mathrm{mg}, 79 \%$, Appearance colorless solid, MP. 58-60 ${ }^{\circ} \mathrm{C}, \boldsymbol{R}_{\boldsymbol{f}}=$ 0.7 (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.44$ ($\mathrm{s}, 4 \mathrm{H}$), $7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H})$, 5.07 (s, 2H), 4.53 ($\mathrm{s}, 2 \mathrm{H}$), $3.42-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.24$ (d, J
 $=7.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 155.8,138.2,137.4,136.5,134.5,129.4$, 127.6, 126.2, 121.7, 112.8, 69.6, 33.5, 26.8, 22.9, 21.5 ppm , HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrNaO}[\mathrm{M}+\mathrm{Na}]^{+} 355.0667$ found 355.0667 .
(8S,9R,13R,14R)-3-((4-(bromomethyl)benzyl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one S3d

Yield 136 mg, 81\%, Appearance colorless solid, MP. 112$114{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{f}=0.4\left(15 \%\right.$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~s}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.79 (dd, $J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$
 $(\mathrm{s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.20-1.95 (m, 4H), 1.67-1.45 (m, 6H), $0.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 221.1$, $156.8,138.1,137.8,137.5,132.6,129.4,127.9,126.5,115.0,112.5,69.6,50.5,48.2,44.1,38.5$, 36.0, 33.4, 31.7, 29.8, 26.7, 26.1, 21.7, 14.0 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{BrO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 453.1423$ found 453.1422 .

General procedure for the sulfide formation of biologically active derivatives.

Prepared according to the general procedure mentioned on Page S2. (Reactions were carried out in 100 mg scale)

(4-Bromobenzyl)(3,7-dimethyloct-6-en-1-yl)sulfane 34a

Yield $222 \mathrm{mg}, 75 \%$, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.5(1 \%$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \boldsymbol{\delta} 7.45$ (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H})$, 2.49-2.35 (m, 2H), 2.01-1.93 (m, 2H), 1.71 (s, 3H), 1.62 (s, 3H), 1.59-
 $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$ ppm, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 137.9,131.7,131.4,130.7,124.8,120.8,36.9,36.4,35.8$, 32.1, 29.3, 25.9, 25.6, 19.4, 17.8 ppm , HRMS (ESI, Q-ToF) $\boldsymbol{m} / \boldsymbol{z}:$ calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BrS}[\mathrm{M}+\mathrm{H}]^{+}$ 343.0912 found 343.0912 .

(4-Bromobenzyl)(3-(2-isopropyl-5-methylphenoxy)propyl)sulfane 34b

Yield 280 mg , 82\%, Appearance colorless liquid, $\boldsymbol{R}_{f}=0.2$ (2\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \mathbf{\delta} 7.51$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=6.0$
 $\mathrm{Hz}, 2 \mathrm{H}) 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 155.9,137.6,136.4,133.9,131.7$, 130.6, 125.9, 121.3, 120.9, 112.2, 66.1, 35.8, 29.3, 28.2, 26.7, 22.9, 21.5 ppm , HRMS (ESI, QToF) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+} 385.0862$ found 385.0863.
(R)-6-(3-((4-Bromobenzyl)thio)propoxy)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12trimethyltridecyl)chromane 34c

Yield $419 \mathrm{mg}, 72 \%$, Appearance yellow liquid, $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (1% EtOAcpetroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}$,

$2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, \mathrm{~J}=2.8,6 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.46-$
$1.38(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 11 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 6 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 148.2,147.9,137.8,131.7,130.7,127.9,125.9,122.9,120.9,117.7,74.9,71.2$, $40.2,39.5,37.7,37.6,37.6,37.5,35.9,32.9,32.9,31.4,30.0,28.4,28.1,24.9,24.6,24.0,22.9$, 22.8, 21.2, 20.8, 19.9, 19.9, 12.9, 12.0, 11.9 ppm , HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{BrO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 675.3640$ found 675.3641 .

(4-Bromobenzyl)(4-((2-isopropyl-5-methylphenoxy)methyl)benzyl)sulfane 34d

Yield $348 \mathrm{mg}, 88 \%$, Appearance colorless sticky solid, $\boldsymbol{R}_{\boldsymbol{f}}$ $=0.7\left(5 \%\right.$ EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~}$ CDCl3 $_{3}$): $\delta 7.56-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.24-7.21 (m, 3H), 6.87-6.83 (m, 2H), $5.13(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}$,
 $2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 155.9,137.4,137.3,136.7,136.5,134.5,131.7,130.8,129.3,127.4,127.4,126.1$, 121.6, 120.9, 112.8, 69.8, 35.4, 35.1, 26.7, 22.9, 21.5 ppm , HRMS (ESI, Q-ToF) $m / z:$ calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrKOS}[\mathrm{M}+\mathrm{K}]^{+} 493.0598$ found 493.0593 .
(8S,9R,13R,14R)-3-((4-(((4-Bromobenzyl)thio)methyl)benzyl)oxy)-13-methyl$\mathbf{6 , 7 , 8 , 9 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 - d e c a h y d r o - 1 7 H - c y c l o p e n t a [a] p h e n a n t h r e n - 1 7 - o n e ~ 3 4 e ~}$

Yield $394 \mathrm{mg}, 79 \%$, Appearance colorless sticky solid, $\boldsymbol{R}_{f}=0.3$ (5\% EtOAc-petroleum ether), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 7.47-$ $7.40(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81$
 (dd, $J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.96-$ $2.92(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.71-$ $1.42(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 220.9,156.9,137.9,137.6,137.3$, $136.2,132.5,131.6,130.8,129.3,127.8,126.5,120.9,115.0,112.5,69.8,50.5,48.1,44.1,38.4$, 35.9, 35.4, 35.0, 31.7, 29.8, 26.6, 26.0, 21.7, 13.9 ppm , HRMS (ESI, Q-ToF) m/z: calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{BrO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 577.1598$ found 577.1598 .

References

[1] A. A. Heredia, A. B. Peñéñory, Eur. J. Org. Chem. 2013, 2013, 991-997.
[2] a) C. S. Adams, C. D. Weatherly, E. G. Burkea, J. M. Schomaker, Chem. Soc. Rev., 2014, 43, 3136-3163; b) R. Y. Liu, Y. Zhou, Y. Yang, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 22512256.
[3] a) V. A. vydrina, A.A. Kravchenko, M. P. yakovleva, N. M. Ishmuratova, G, Yu. Ishmuratov, chem. Nat. Compd. 2018, 54, 391-393; b) M. Pendke, S. Chandrasekhar, P. Mainkar, Int. J. pharm. 2015, 4, 16-23; c) C. S. Hanson, M. C. Psaltakis, J. J. Cortes, J. J. Devery J. Am. Chem. Soc. 2019, 141, 11870-11880.
[4] a) X. Xu, K. Zhang, P. Li, A. Lin, Org. Lett. 2018, 20, 1781-1784; b) Q. Xie, G. Dong, J. Am. Chem. Soc. 2021, 143, 14422-14427.

X-ray crystal data

1,2-Bis((4-bromobenzy)thio)ethane 20a (CCDC No. 2168016)

Table S1. X-ray crystallographic data and refinement parameters for 20a (CCDC No. 2168016)

Identification code	$\mathrm{SP}-2-21$	
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrS}($ monomer unit)	
Formula weight	216.11	
Temperature	$150(2) \mathrm{K}$	
Crystal system	monoclinic	
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=16.6134(6) \AA \quad \alpha=90^{\circ}$	
	$\mathrm{b}=5.5697(2) \AA \quad \beta=104.329(4)^{\circ}$	
	$\mathrm{c}=9.1693(4) \AA$	$\gamma=90^{\circ}$
Volume	$822.06(6) \AA \AA^{3}$	
Z	4	
Density (calculated)	$1.746 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient (μ)	$5.172 \mathrm{~mm}^{-1}$	
Absorption correction	Multi-scan	
Max. and Min. transmission	$1.000-0.283$	
F (000)	428.0	
Crystal size	$0.426 \times 0.245 \times 0.124 \mathrm{~mm}^{3}$	

Index ranges
Two-theta range for data collection
Reflections collected
Diffraction radiation wavelength
Independent reflections
Completeness to $\theta=24.998^{\circ}$
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$-19 \leq h \leq 19,-6 \leq \mathrm{k} \leq 6,-9 \leq 1 \leq 10$
5.062 to 49.984°

4332
0.71073
$1385\left[\mathrm{R}_{(\mathrm{int})}=0.0317\right]$
95\%
Full-matrix least-squares on F^{2}
1385/0/91
1.076
$R 1=0.0264, w R 2=0.0598$
$R 1=0.0341, w R 2=0.0631$
$0.34 /-0.40$ e \AA^{-3}
(E)-1,4-Bis((4-bromobenzyl)thio)but-2-ene (21b) (CCDC No. 2168017)

Table S1. X-ray crystallographic data and refinement parameters for 21b (CCDC No. 2168017)

Identification code
Empirical formula
Formula weight
Temperature
Crystal system

SP-2-65
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrS}($ monomer unit)
229.13

304(2) K
monoclinic

Space group	$\mathrm{P} 21 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=16.5752(12) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=6.3230(6) \AA$	$\beta=100.622(8)^{\circ}$
	$\mathrm{c}=9.1422(8) \AA$	$\gamma=90^{\circ}$
Volume	941.73(14) \AA^{3}	
Z	4	
Density (calculated)	$1.616 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient (μ)	$4.520 \mathrm{~mm}^{-1}$	
Absorption correction	Multi-scan	
Max. and Min. transmission	1.000-0.281	
F (000)	456.0	
Crystal size	$0.274 \times 0.270 \times 0.1$	mm^{3}
Index ranges	$-19 \leq \mathrm{h} \leq 17,-7 \leq \mathrm{k}$	$7,-10 \leq 1 \leq 10$
Two-theta range for data collection	6.912 to 49.996°	
Reflections collected	5115	
Diffraction radiation wavelength	0.71073	
Independent reflections	$1641\left[\mathrm{R}_{(\mathrm{int})}=0.037\right.$	
Completeness to $\theta=24.998^{\circ}$	99\%	
Refinement method	Full-matrix least-sq	ares on F^{2}
Data/restraints/parameters	1641/0/100	
Goodness-of-fit on F^{2}	1.029	
Final R indices [$\mathrm{I}>=2 \sigma$ (I$)]$	$R 1=0.0350, w R 2=$	0.0716
R indices (all data)	$R 1=0.0525, w R 2=$. 0800
Largest diff. peak and hole	$0.40 /-0.48 \mathrm{e}^{\text {A }}{ }^{-3}$	

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z) ~ a n d ~}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{2}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) ~ o f ~} 3$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 5 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 5 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 5 \mathrm{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{5 d}$ in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of 6 a in CDCl_{3}

(
(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 6 b ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{6 c}$ in CDCl_{3}

(
(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of $\mathbf{6 d}$ in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 6e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR ($\mathbf{(4 0 0 ~ M H z) ~ a n d ~}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of $\mathbf{6 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) ~ o f ~} \mathbf{6 g}$ in CDCl_{3}

${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{6 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 7 a ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 7b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{7 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of $\mathbf{7 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 7 e ~ i n ~} \mathrm{CDCl}_{3}$

(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 8 a ~ i n ~} \mathrm{CDCl}_{3}$

(
(s)

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 8b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 8 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 8 d ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 8 e in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 8 f in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 8 g in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 9a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 9 b ~ i n ~} \mathrm{CDCl}_{3}$

(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 9 \mathrm{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 9 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 9 e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 9 f in CDCl_{3}

(
${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 10 \mathrm{a}$ in CDCl_{3}

	Numm	Hum	?		Wunvom				「 $\stackrel{+}{\infty}$ +		muxyme
200	180		140			80	60		20	1	ppm

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 10 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 10 \mathrm{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z) ~ a n d ~}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 10 \mathrm{~d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 10 \mathrm{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 11a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 11 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 11 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 11 \mathrm{~d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 11 e in CDCl_{3}
(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 1 2 a ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of $\mathbf{1 2 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 12 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{1 2 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 1 3 a ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{1 3 b}$ in CDCl_{3}
(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}$) of $\mathbf{1 3 c}$ in CDCl_{3}

(
(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 14 \mathrm{a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 14 \mathrm{~b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 14 c in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 14 \mathrm{~d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 14 \mathrm{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 15 \mathrm{a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 15 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of 15 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 15 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 15 e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of $\mathbf{1 5 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 16 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 16 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 16 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 16 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of $17 \mathrm{in} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of 18 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 19 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 19 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 19 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) ~ o f ~} 19 \mathrm{~d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 19 e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of 19 f in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 19 g in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 2 0 a ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 20b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 20 \mathrm{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 20 \mathrm{~d}$ in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 2 1 a ~ i n ~} \mathrm{CDCl}_{3}$

(

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 21 \mathrm{~b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 21 \mathrm{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) ~ a n d ~}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) ~ o f ~} 21 \mathrm{~d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 22a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 22 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 22c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 22 \mathrm{~d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 23a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 23 \mathrm{~b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 23 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 2 3 d ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 24a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 24 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 24 c in CDCl_{3}

novomumum	Humb							$\stackrel{\rightharpoonup}{3}$	e Me	\%	N	0
220	200	180	160	140	120	100	80	60	40	20	0	

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) ~ o f ~} 24 \mathrm{~d}$ in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of 25 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}$) of 26a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) ~ o f ~ 2 6 b ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{2 6 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{2 6 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 26e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of 26 f in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 26 g in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 27 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 27 \mathrm{~b}$ in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 27 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of 27 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 27 e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 28$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 29 in CDCl_{3}
(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of 30 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) of $31 \mathrm{in} \mathrm{CDCl}_{3}$

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 32a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 32b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100MHz) of 32 c in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 32 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 3 3 a ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ 3 3 b ~ i n ~} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} \mathbf{3 3 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~ S 3 a ~ i n ~} \mathrm{CDCl}_{3}$

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}$) of $\mathrm{S3c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of $\mathrm{S3d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 34a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ of 34 b in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 34 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z) ~ a n d ~}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z) ~ o f ~} 34 \mathrm{~d}$ in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) of 34 e in CDCl_{3}

