Supporting information

For

One-Pot Thiol-free Synthetic Approach to Sulfides and Sulfoxides Selectively

Sambasivarao Kotha,* Naveen Kumar Gupta and Saima Ansari

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.

E-mail: srk@chem.iitb.ac.in

Table of Contents

•	Genearal information	S2
•	Experimental Data	S2-S39
•	References	S40
•	XRD Data for reported crystals	S41-S43
•	NMR plots	S44-S168

General information

All commercially accessible reagents were used without further purification. Reagents like Potassiumthioacetate (PTA), benzyl bromide, K₂CO₃, allyl bromide, 1-bromo-3-methylbut-2-ene, butenyl bromide, pentenyl bromide, hexenyl bromide, propargyl bromide, 4-bromobut-1-yne, dibromo-derivatives, citronellol, thymol, tocopherol, estrone were obtained from commercial sources such as Aldrich, Avra, Chemscene, TCI chemicals and Spectrochem. The reaction progress was monitored by thin-layer chromatography ($2.0 \times 4.0 \text{ cm}^2$ alumina plates) using appropriate solvent systems. An iodine chamber and TLC stain solutions (prepared freshly) such as KMnO₄ and vanillin were used to visualize the UV-inactive spots. After successive solvent extraction, the combined organic layer was washed with brine (aqueous saturated NaCl solution), dried over oven-dried anhydrous sodium sulfate (Na₂SO₄), and concentrated under reduced pressure using a rotary evaporator. Column chromatography was performed by using Acme's silica gel (100-200 mesh) with an appropriate mixture of EtOAc and petroleum ether. NMR spectra of all newly synthesized compounds were obtained by using Bruker (AVANCE IIITM) 500 MHz and Bruker (AVANCE IIITM) 400 MHz spectrometers and solvent residual peaks as an internal standard (¹ H NMR: 500 and 400 MHz, CDCl₃ at 7.26 ppm; ¹³ C NMR: 125 and 100 MHz, CDCl₃ at 77.2 ppm). ¹ H NMR data expressed in chemical shift (δ ppm), multiplicity (s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet), and coupling constants (J in hertz). Highresolution mass spectrometry (HRMS) measurements of unknown compounds were done by using Bruker (Maxis Impact) or Micromass Q-ToF spectrometers. The melting points (mp's) of solid compounds were obtained from a Veego/Buchi 560 melting point apparatus and are uncorrected. X-ray diffraction data was collected on a Bruker D8 QUEST (APEX-II CCD) diffractometer equipped with monochromated Mo Ka ($\lambda = 0.71073$).

General procedure for the synthesis of sulfides (thioethers)

To the solution of benzyl bromide (1 equiv.) and potassium thioacetate (1 equiv.) in methanol (10 mL) in a two-neck round-bottom flask, stirred at room temperature for 2 h. After consumption of starting material, potassium carbonate, (3 equiv.) was added and the resulting reaction mixture was allowed to stir for 10 min. Further, bromo compound (electrophile) (1 equiv.) was transferred to the reaction mixture and stirred at room temperature for 3 h. After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate (3×10 mL). The organic layer was separated, washed

with brine solution and dried over anhydrous Na₂SO₄. Then, the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the sulfide compounds. (Reactions were carried out in 100 mg scale)

Based on the previous reports,¹ we propose the mechanism as shown in Scheme 1 for the formation of unsymmetrical sulfide as well as the dibenzyl sulfide **E** (**3** in main manuscript). In the first step, benzyl bromide (**A**) interacts with potassium thioacetate to generate compound **B**. Next, we added potassium carbonate which abstracts proton from the compound **B** and gives intermediate **C**. The intermediate **C** further reacts with primary halide to deliver the desired compound **D**. However, if intermediate sulfide **C** attacks at the benzylic carbon of **B**, it leads to the dimer **E**. Additionally, in case of secondary/tertiary/sp² hybridized electrophilic center of halides, unsymmetrical sulfide **F** was not delivered and only the dimer **E** was observed.

Allyl(benzyl)sulfane 2

Yield 114 mg, 80%, Appearance colorless liquid, $R_f = 0.7$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.36 (m, 4H), 7.31-7.28 (m, 1H), 5.90-5.82 (m, 1H), 5.20-5.13 (m, 2H), 3.72 (s, 2H), 3.09 (d, J = 7.0 Hz, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.4, 134.3, 129.1, 128.6, 127.0, 117.4, 34.9, 34.1ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₀H₁₂KS [M+K]⁺ 203.0291, found 203.0291.

Dibenzylsulfane 3

Yield 136 mg, 73%, **Appearance** colorless sticky liquid, $R_f = 0.5$ (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.25 (m, 10H), 3.62 (s, 4H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 137.5, 129.6, 128.7, 127.6, 43.5 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₄H₁₄KS [M+K]⁺ 253.0448, found 253.0447.

Allyl(4-bromobenzyl)sulfane 5a

Yield 174 mg, 82%, **Appearance** colorless liquid, $R_f = 0.7$ (1% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.83-5.73 (m, 1H), 5.15-5.05 (m, 2H), 3.60

(s, 2H), 3.01 (d, *J* = 7.2 Hz, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 137.5, 134.2, 131.7, 130.9, 120.9, 117.7, 34.4, 34.2 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₀H₁₁BrKS [M+K]⁺ 280.9396, found 280.9396.

3-((Allylthio)methyl)benzaldehyde 5b

Yield 122 mg, 73%, **Appearance** yellow liquid, $R_f = 0.4$ (10% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 10.00 (s, 1H), 7.82 (s, OHC OHC NHZ, CDCl₃): δ 10.00 (s, 1H), 7.82 (s, OHC NHZ, CDCl₃): δ 10.00 (s, 0HZ NHZ, CDCl₃): δ 10.00 (s, 0

δ 192.3, 139.8, 136.8, 135.3, 134.0, 130.2, 129.4, 128.7, 117.9, 34.5, 34.3 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₁₁H₁₂KOS [M+K]⁺ 231.0240, found 231.0240.

4-((Allylthio)methyl)benzaldehyde 5c

Yield 126 mg, 75%, **Appearance** yellow liquid, $R_f = 0.4$ (10% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 9.98 (s, 1H), 7.82 (d,

J = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 5.82-5.74 (m, 1H), 5.15-5.06 (m, 2H), 3.70 (s, 2H), 3.03 (d, *J* = 7.0 Hz, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 191.9, 145.8, 135.4, 133.9, 130.1, 129.8, 117.9, 34.8, 34.3 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₁H₁₂KOS [M+K]⁺ 231.0240, found 231.0240.

4-((Allylthio)methyl)benzonitrile 5d

Yield 114 mg, 69%, **Appearance** yellow liquid, $R_f = 0.5$ (10% EtOAc-NC petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.59 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 5.81-5.72 (m, 1H), 5.15-5.04 (m, 2H), 3.67 (s, 2H), 3.01 (d, J = 7.0 Hz, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 144.3, 133.9, 132.4, 129.9, 118.9, 117.9, 110.9, 34.7, 34.3 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₁H₁₂NS [M+H]⁺ 190.0684, found 190.0684.

benzyl(3-Methylbut-2-en-1-yl)sulfane 6a

Yield 146 mg, 88%, Appearance colorless liquid, $\mathbf{R}_f = 0.7$ (1% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.32 (m, 4H), 7.29-7.25 (m, 1H), 5.31-5.27 (m, 1H), 3.72 (s, 2H), 3.10 (d, J = 7.6 Hz, 2H), 1.78 (s, 3H), 1.62 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 135.4, 128.9, 128.4,

126.9, 120.5, 35.7, 29.2, 25.8, 17.9 ppm, **HRMS** (**ESI,Q-ToF**) *m*/*z*: calcd for C₁₂H₁₇S [M+H]⁺ 193.1045, found 193.1045.

(4-Methylbenzyl)(3-methylbut-2-en-1-yl)sulfane 6b

Yield 144 mg, 81%, **Appearance** colorless liquid, $\mathbf{R}_f = 0.8$ (1% EtOAc-petroleum ether), ¹**H** NMR (500 MHz, CDCl3): δ 7.21 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 5.27-5.23 (m, 1H), 3.66 (s, 1H),

2.05 (d, J = 8.0 Hz, 2H), 2.34 (s, 3H), 1.75 (s, 3H), 1.60 (s, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 136.6, 135.6, 135.5, 129.2, 128.9, 120.6, 35.5, 29.2, 25.9, 21.2, 17.9 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₃H₁₉S [M+Na]⁺ 207.1198, found 207.1198.

Me

(2-Bromobenzyl)(3-methylbut-2-en-1-yl)sulfane 6c

Yield 184 mg, 78%, **Appearance** colorless liquid, $\mathbf{R}_f = 0.7$ (1% EtOAcpetroleum ether), ¹**H NMR** (**500 MHz, CDCl**₃): δ 7.57 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz,

Br Me

1H), 5.28 (t, J = 7.8 Hz, 1H), 3.83 (s, 2H), 3.15 (d, J = 7.5 Hz, 2H), 1.77 (s, 3H), 1.62 (s, 3H) ppm,
¹³C NMR (125 MHz, CDCl₃): δ 138.0, 135.9, 133.1, 130.7, 128.5, 127.5, 124.7, 120.3, 35.9, 29.6,
25.8, 17.9 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₅BrKS [M+K]⁺ 308.9709, found 308.9709.

(3-Bromobenzyl)(3-methylbut-2-en-1-yl)sulfane 6d

Yield 194 mg, 82%, **Appearance** colorless liquid, $\mathbf{R}_f = 0.9$ (1% EtOAcpetroleum ether), ¹**H NMR** (400 MHz, CDCl₃): δ 7.46 (s, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 5.21 (t, J = 7.6 Hz, 1H), 3.63 (s, 2H), 3.05 (d, J = 8.0 Hz, 2H), 1.74 (s, 3H), 1.58 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 141.2, 135.9, 131.9, 130.0, 127.6, 122.5, 120.3, 35.1, 29.2, 25.8, 17.9 ppm, **HRMS** (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₅BrKS [M+K]⁺ 308.9709, found 308.9709.

(4-Bromobenzyl)(3-methylbut-2-en-1-yl)sulfane 6e

Yield 214 mg, 91%, **Appearance** colorless liquid, $\mathbf{R}_f = 0.8$ (1% EtOAcpetroleum ether), ¹**H NMR** (**400 MHz, CDCl**₃): δ 7.42 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 5.21 (t, J = 7.4 Hz, 1H), 3.62 (s, 2H), 3.03 (d, J = 7.6 Hz, 2H), 1.73 (s, 3H), 1.57 (s, 3H) ppm, ¹³C **NMR** (**100 MHz, CDCl**₃): δ 137.9, 135.8, 131.6, 130.7, 120.7, 120.3, 35.1, 29.2, 25.8, 17.9 ppm, **HRMS** (**ESI,Q-ToF**) *m/z*: calcd for C₁₂H₁₅BrKS [M+K]⁺ 308.9709, found 308.9709.

4-(((3-Methylbut-2-en-1-yl)thio)methyl)benzaldehyde 6f

Yield 146 mg, 76%, **Appearance** Yellow liquid, $R_f = 0.5$ (5% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 7.81 (s, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 5.21-5.18 (m,1H), 3.72 (s, 2H), 3.04 (d, J = 7.6 Hz, 2H), 1.71 (s, 3H), 1.54 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 140.2, 136.7, 136.0, 135.1, 129.9, 129.3, 128.5, 120.2, 35.2, 29.3, 25.8, 17.9 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₃H₁₇OS [M+H]⁺ 221.0995, found 221.0994.

4-(((3-Methylbut-2-en-1-yl)thio)methyl)benzaldehyde 6g

Yield 152 mg, 79%, Appearance yellow liquid, $R_f = 0.4$ (10% OHC EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 5.23-5.18 Me (m,1H), 3.72 (s, 2H), 3.05 (d, J = 7.6 Hz, 2H), 1.72 (s, 3H), 1.56 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 146.3, 136.2, 135.4, 130.1, 129.7, 120.2, 35.6, 29.4, 25.9, 18.0 ppm,

HRMS (ESI.O-ToF) *m/z*: calcd for C₁₃H₁₇OS [M+H]⁺ 221.0995, found 221.0994.

4-(((3-Methylbut-2-en-1-yl)thio)methyl)benzonitrile 6h

Yield 134 mg, 71%, Appearance yellow liquid, $R_f = 0.6$ (10% NC EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 5.18 (t, J = 7.8 Hz, 1H), 3.68 (s, 2H), 3.02 (d, J = 7.5 Hz, 2H), 1.71 (s, 3H), 1.54 (s, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 144.6, 136.2, 132.3, 129.7, 119.9, 118.9, 110.7, 35.4, 29.4, 25.8, 17.9 ppm, HRMS (ESI,Q-ToF) m/z: calcd for C₁₃H₁₆NS [M+H]⁺ 218.0998, found 218.0997.

Benzyl(but-3-en-1-yl)sulfane 7a

Yield 118 mg, 76%, **Appearance** colorless liquid, $R_f = 0.7$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.42-7.38 (m, 4H), 7.35-7.31 (m, 1H), 5.94-5.85 (m, 1H), 5.17-5.11 (m, 2H), 3.81 (s, 2H), 2.57 (t, J = 7.3 Hz, 2H), 2.42-2.38 (m, 2H), ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.4, 136.7, 128.8, 128.4, 126.9, 115.8, 36.2, 33.5, 30.6 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₁H₁₄KS [M+K]⁺ 217.0448, found 217.0447.

(4-Bromobenzyl)(but-3-en-1-yl)sulfane 7b

Yield 160 mg, 72%, Appearance colorless liquid, *R_f* = 0.8 (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.4 Hz,
2H), 7.19 (d, *J* = 8.4 Hz, 2H), 5.84-5.74 (m, 1H), 5.08-5.01 (m, 2H), 3.66 (s, 2H), 2.47 (t, *J* = 7.4

Hz, 2H), 2.33-2.27 (m, 2H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 137.7, 136.7, 131.7, 130.7, 120.9, 116.2, 35.9, 33.6, 30.9 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₁H₁₃BrKS [M+K]⁺ 294.9553, found 294.9552.

3-((But-3-en-1-ylthio)methyl)benzaldehyde 7c

Yield 122 mg, 68%, **Appearance** yellow liquid, $R_f = 0.3$ (10% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 9.98 (s, 1H), 7.80 (s, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 5.79-5.72 (m, 1H), 5.04-4.98 (m, 2H), 3.76 (s, 2H), 2.46 (t, J = 7.3 Hz, 2H), 2.29 (t, J = 7.0 Hz, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 192.2, 139.9, 136.7, 136.5, 134.9, 129.9, 129.3, 128.6, 116.2, 35.9, 33.5, 30.9 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₄KOS [M+K]⁺ 245.0397, found 245.0396.

4-((But-3-en-1-ylthio)methyl)benzaldehyde 7d

Yield 128 mg, 71%, **Appearance** yellow liquid, $\mathbf{R}_f = 0.4$ (10% EtOAc-ohc petroleum ether), ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 9.98 (s, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H) 5.82-5.72 (m, 1H), 5.06-4.99 (m, 2H), 3.76 (s, 2H), 2.47 (t, J = 7.4 Hz, 2H), 2.30 (t, J = 7.2 Hz, 2H) ppm, ¹³**C NMR** (**100 MHz**, **CDCl**₃): δ 191.9, 145.9, 136.5, 135.4, 130.1, 129.6, 116.3, 36.3, 33.5, 30.9 ppm, **HRMS** (**ESI,Q-ToF**) *m/z*: calcd for C₁₂H₁₄KOS [M+K]⁺ 245.0397, found 245.0397.

4-((But-3-en-1-ylthio)methyl)benzonitrile 7e

Yield 110 mg, 62%, **Appearance** colorless liquid, $R_f = 0.3$ (10% NC EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.61 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H) 5.81-5.73 (m, 1H), 5.07-5.02 (m, 2H), 3.74 (s, 2H), 2.46 (t, J = 7.5 Hz, 2H), 2.29 (t, J = 7.0 Hz, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 144.4, 136.4, 132.5, 129.7, 118.9, 116.4, 110.9, 36.3, 33.5, 31.0 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₃KS [M+K]⁺ 242.0400, found 242.0400.

Benzyl(pent-4-en-1-yl)sulfane 8a

Yield 124 mg, 74%, **Appearance** colorless liquid, $R_f = 0.9$ (1% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 4.0 Hz, 4H), 7.28-7.25 (m, 1H) 5.83-5.73 (m, 1H), 5.05-4.98 (m, 2H), 3.73 (s, 2H), 2.45 (t, *J* = 7.4 Hz, 2H), 2.14 (q, *J* = 7.0 Hz, 2H), 1.72-1.64 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 137.9, 128.9, 128.6, 127.0, 115.3, 36.3, 32.9, 30.8, 28.5 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₆KS [M+K]⁺ 231.0604, found 231.0604.

(2-Bromobenzyl)(pent-4-en-1-yl)sulfane 8b

Yield 162 mg, 69%, **Appearance** colorless liquid, $R_f = 0.8$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.58 (dd, J = 8.0, 1.0Hz, 1H), 7.40 (dd, J = 7.5, 1.5 Hz, 1H), 7.28 (dd, J = 7.5, 1.0 Hz, 1H), 7.12 (td, J = 7.5, 1.6 Hz, 1H), 5.84-5.76 (m, 1H), 5.07-4.99 (m, 2H), 3.86 (s, 2H), 2.53 (t, J = 7.0Hz, 2H), 2.17 (q, J = 6.6 Hz, 2H), 1.75-1.69 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.1, 137.8, 133.1, 130.8, 128.6, 127.5, 124.6, 115.3, 36.5, 32.9, 31.2, 28.6 ppm, HRMS (ESI,Q-ToF) m/z: calcd for C₁₂H₁₅BrKS [M+K]⁺ 308.9709, found 308.9709.

(3-Bromobenzyl)(pent-4-en-1-yl)sulfane 8c

Yield 166 mg, 71%, **Appearance** colorless liquid, $R_f = 0.8$ (1% EtOAcpetroleum ether), ¹**H NMR (500 MHz, CDCl₃):** δ 7.47 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 5.79-

5.71 (m, 1H), 5.03-4.96 (m, 2H), 3.65 (s, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 2.12 (q, *J* = 7.8 Hz, 2H), 1.68-1.62 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 141.1, 137.8, 131.9, 130.2, 130.1, 127.6, 122.6, 115.4, 35.8, 32.8, 30.9, 28.4 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₂H₁₅BrKS [M+K]⁺ 308.9709, found 308.9709.

(4-Bromobenzyl)(pent-4-en-1-yl)sulfane 8d

Yield 176 mg, 75%, **Appearance** colorless liquid, $R_f = 0.8$ (1% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J =

8.5 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 5.82-5.74 (m, 1H), 5.06-4.99 (m, 2H), 3.67 (s, 2H), 2.43 (t, J = 7.5 Hz, 2H), 2.14 (q, J = 7.3 Hz, 2H), 1.70-1.64 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃) δ 137.7, 137.7, 131.5, 130.5, 120.7, 115.3, 35.6, 32.8, 30.7, 28.3 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₂H₁₅BrKS [M+K]⁺ 308.9709, found 308.9709.

3-((Pent-4-en-1-ylthio)methyl)benzaldehyde 8e

Yield 128 mg, 67%, **Appearance** colorless liquid, $R_f = 0.3$ (10% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 10.01 (s, 1H), 7.82 (s, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 5.78-5.69 (m, 1H), 5.01-4.95 (m, 2H), 3.76 (s, 2H), 2.42 (t, J = 7.5 Hz, 2H), 2.11 (q, J = 7.0

Hz, 2H), 1.68-1.62 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 192.4, 140.1, 137.8, 136.8, 135.1, 129.9, 129.4, 128.7, 115.5, 35.9, 32.9, 30.9, 28.4 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₃H₁₆KOS [M+K]⁺ 259.0553, found 259.0553.

4-((Pent-4-en-1-ylthio)methyl)benzaldehyde 8f

Yield 134 mg, 70%, Appearance yellow liquid, $R_f = 0.3$ (10% OHC. EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s,

1H) 7.82 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 5.78-5.68 (m, 1H), 5.02-4.94 (m, 2H), 3.74 (s, 2H), 2.42 (t, J = 7.2 Hz, 2H), 2.10 (q, J = 7.2 Hz, 2H), 1.68-1.60 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 146.1, 137.2, 135.4, 130.2, 129.6, 115.5, 36.3, 32.9, 31.0, 28.4 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₃H₁₆KOS [M+K]⁺ 259.0553, found 259.0553.

4-((Pent-4-en-1-ylthio)methyl)benzonitrile 8g

Yield 122 mg, 65%, Appearance colorless liquid, $R_f = 0.3$ (10% NC EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 5.77-5.67 (m, 1H), 5.00-4.93 (m, 2H), 3.71 (s, 2H), 2.39 (t, J = 7.4 Hz, 2H), 2.10 (q, J = 7.4 Hz, 2H), 1.66-1.59 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 144.5, 137.6, 132.4, 129.6, 118.8, 115.4, 110.9, 36.1, 32.7, 30.9, 28.3 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₃H₁₅NNaS [M+Na]⁺ 240.0817, found 240.0817.

Benzyl(hex-5-en-1-yl)sulfane 9a

Yield 130 mg, 72%, Appearance yellow liquid, $R_f = 0.9$ (1% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.33 (m, 4H), 7.31-7.23 (m, 1H) 5.85-5.75 (m, 1H), 5.04-4.96 (m, 2H), 3.72 (s, 2H), 2.44 (t, J = 7.4 Hz, 2H), 2.05 (q, J = 7.2 Hz, 2H), 1.64-1.56 (m, 2H), 1.51-1.44 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 138.6, 128.9, 128.6, 126.9, 114.8, 36.4, 33.4, 31.2, 28.7, 28.1 ppm, HRMS (ESI,Q-ToF) m/z: calcd for C₁₃H₁₈KS [M+K]⁺ 245.0761, found 245.0760.

(2-Bromobenzyl)(hex-5-en-1-yl)sulfane 9b

Yield 168 mg, 68%, **Appearance** colorless liquid, $R_f = 0.8$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.59-7.57 (m, 1H), 7.40-7.39 (m, 1H), 7.31-7.27 (m, 1H), 7.15-7.11 (m, 1H), 5.84-5.77 (m,

1H), 5.05-4.97 (m, 2H), 3.86 (s, 2H), 2.53-2.50 (m, 2H), 2.10-2.05 (m, 2H), 1.67-1.61 (m, 2H),
1.53-1.47 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.6, 138.2, 133.2, 130.8, 128.6, 127.5,
124.6, 114.8, 36.6, 33.4, 31.7, 28.9, 28.2 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₃H₁₇BrKS [M+K]⁺ 322.9866, found 322.9865.

(4-Bromobenzyl)(hex-5-en-1-yl)sulfane 9c

Yield 182 mg, 73%, Appearance colorless liquid, $R_f = 0.8$ (1% Br EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.42 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.81-5.73 (m, 1H), 5.01-4.95 (m, 2H), 3.64 (s, 2H), 2.39

(t, J = 7.5 Hz, 2H), 2.03 (q, J = 7.8 Hz, 2H), 1.59-1.53 (m, 2H), 1.48-1.42 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.5, 137.8, 131.6, 130.6, 120.8, 114.8, 35.7, 33.3, 31.3, 28.6, 28.1 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₃H₁₇BrKS [M+K]⁺ 322.9866, found 322.9865.

3-((Hex-5-en-1-ylthio)methyl)benzaldehyde 9d

Yield 128 mg, 63%, **Appearance** colorless liquid, $R_f = 0.4$ (10% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 7.79 (s, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 5.77-5.69 (m, 1H), 4.98-4.90 (m, 2H), 3.74 (s, 2H), 2.39 (t, J = 7.2 Hz, 2H), 2.00 (q, J = 7.2 Hz, 2H), 1.59-1.51 (m, 2H), 1.46-1.39 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 140.1, 138.4, 136.7, 134.9, 129.9, 129.3, 128.6, 114.8, 35.9, 33.3, 31.4, 28.6, 27.9 ppm, HRMS (ESI,Q-ToF) m/z: calcd for C₁₄H₁₈KS [M+K]⁺ 273.0710, found 273.0709.

4-((Hex-5-en-1-ylthio)methyl)benzaldehyde 9e

Yield 140 mg, 69%, **Appearance** colorless liquid, $R_f = 0.5 (10\%)$ OHC EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.93 (s, 1H) 7.77 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 7.2 Hz, 2H), 5.75-5.66 (m, 1H), 4.94-4.87 (m, 2H), 3.69 (s, 2H), 2.37-2.34 (m, 2H), 1.97-1.96 (m, 2H), 1.51-1.49 (m, 2H), 1.40-1.39 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.6, 145.9, 138.3, 135.2, 129.9, 129.4, 114.7, 36.1, 33.2, 31.3, 28.5, 27.9 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₄H₁₈KS [M+K]⁺ 273.0710, found 273.0709.

4-((Hex-5-en-1-ylthio)methyl)benzonitrile 9f

Yield 128 mg, 64%, **Appearance** colorless liquid, $R_f = 0.4$ (10% NC EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 5.79-5.70 (m, 1H), 4.99-4.92 (m, 2H), 3.70 (s, 2H), 2.38 (t, J = 7.8 Hz, 2H), 2.01 (q, J = 7.3 Hz, 2H), 1.57-1.51 (m, 2H), 1.46-1.39 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 144.5, 138.4, 132.4, 129.6, 118.9, 114.9, 110.8, 36.2, 33.3, 31.5, 28.6, 27.9 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₄H₁₇KNS [M+K]⁺ 270.0713, found 270.0713.

Benzyl(prop-2-yn-1-yl)sulfane 10a

Yield 106 mg, 75%, **Appearance** yellow liquid, $R_f = 0.8$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.42-7.37 (m, 4H), 7.34-7.31 (m, 1H), 3.93 (s, 2H), 3.12 (d, J = 2.5 Hz, 2H), 2.36 (t, J = 2.8 Hz, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 137.6, 129.2, 128.7, 127.4, 80.0, 71.5, 35.4, 18.5 ppm, HRMS (ESI,Q-ToF) m/z: calcd for C₁₀H₁₁S [M+H]⁺ 163.0576, found 163.0575.

(4-Bromobenzyl)(prop-2-yn-1-yl)sulfane 10b

Yield 156 mg, 74%, **Appearance** dark brown liquid, $R_f = 0.5$ (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 3.82 (s, 2H), 3.07 (d, J = 2.4 Hz, 2H), 2.30 (t, J = 2.6 Hz, 1H)

ppm, ¹³C NMR (100 MHz, CDCl₃): δ 136.6, 131.8, 130.9, 121.2, 79.7, 71.7, 34.7, 18.5 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₀H₉BrKS [M+K]⁺ 278.9240, found 278.9240.

3-((Prop-2-yn-1-ylthio)methyl)benzaldehyde 10c

Yield 101 mg, 61%, **Appearance** yellow liquid, $R_f = 0.4$ (10% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 10.02 (s, 1H), 7.86 (s, OHC - O 135.2, 130.3, 129.5, 128.9, 79.5, 71.9, 34.9, 18.7 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₁₁H₁₀KOS [M+K]⁺ 229.0084, found 229.0084.

4-((Prop-2-yn-1-ylthio)methyl)benzaldehyde 10d

Yield 114 mg, 69%, **Appearance** brown sticky liquid, $R_f = 0.4$ (10% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 10.00 (s, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 3.93 (s, 2H), 3.08 (d, J = 3.0 Hz, 2H), 2.32 (t, J = 2.5 Hz, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 191.9, 144.9, 135.6, 130.2, 129.9, 79.5, 71.9, 35.2, 18.7 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₁H₁₀KOS [M+K]⁺ 229.0084, found 229.0083.

4-((Prop-2-yn-1-ylthio)methyl)benzonitrile 10e

Yield 102 mg, 63%, **Appearance** brown sticky liquid, $R_f = 0.4$ (10% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.62 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 3.90 (s, 2H), 3.07 (d, J = 2.5 Hz, 2H), 2.32 (t, J = 2.5 Hz, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 143.4, 132.6, 129.9, 118.9, 111.3, 79.3, 72.1, 35.0, 18.6 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₁H₁₀NS [M+H]⁺ 188.0528, found 188.0528. Benzyl(but-3-yn-1-yl)sulfane 11a

Yield 106 mg, 71%, **Appearance** colorless liquid, $R_f = 0.8$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.34 (m, 4H), 7.29-7.27 (m, 1H), 3.78 (s, 2H), 2.61 (t, J = 7.4 Hz, 2H), 2.44 (td, J = 7.2, 2.0 Hz, 2H) 2.05 (s, 1H) ppm ¹³C NMR (125 MHz, CDCl₃): δ 138.2, 128.9, 128.6, 127.2

2H), 2.05 (s, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.2, 128.9, 128.6, 127.2, 82.7, 69.6, 36.3, 30.0, 19.6 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₁H₁₂KS [M+K]⁺ 215.0291, found 215.0291.

(4-Bromobenzyl)(but-3-yn-1-yl)sulfane 11b

Yield 148 mg, 67%, **Appearance** brown liquid, $R_f = 0.4$ (1% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 3.70 (s, 2H), 2.58-2.54 (m, 2H), 2.44-2.39 (m, 2H), 2.04 (t, J = 2.6 Hz, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 137.2, 131.7, 130.6, 121.0, 82.6, 69.7, 35.8, 30.0, 19.7 ppm, **HRMS (ESI,Q-ToF)** *m*/*z*: calcd for C₁₁H₁₂BrS [M+H]⁺ 254.9820, found 254.9820,

3-((But-3-yn-1-ylthio)methyl)benzaldehyde 11c

Yield 110 mg, 62%, **Appearance** yellow liquid, $R_f = 0.4$ (10% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 10.00 (s, 1H), 7.83 (s, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 3.83 (s, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.46-2.42 (m, 2H), 2.03 (t, J = 2.8 Hz, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 139.6, 136.8, 135.0, 129.9, 129.4, 128.8, 82.5, 69.9, 36.0, 30.2, 19.7 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₂KOS [M+K]⁺ 243.0240, found 243.0240.

4-((But-3-yn-1-ylthio)methyl)benzaldehyde 11d

Yield 120 mg, 68%, **Appearance** brown liquid, $R_f = 0.4$ (10% OHC EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 9.99 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H) 3.83 (s, 2H), 2.59 (t, J = 7.3 Hz, 2H), 2.46-2.43 (m, 2H), 2.03 (t, J = 2.5 Hz, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 191.9, 145.6, 135.6, 130.3, 129.7, 82.5, 69.9, 36.4, 30.3, 19.8 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₂KOS [M+K]⁺ 243.0240, found 243.0240.

4-((But-3-yn-1-ylthio)methyl)benzonitrile 11e

Yield 110 mg, 63%, **Appearance** yellow sticky liquid, $R_f = 0.4$ (10% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 3.81 (s, 2H), 2.58 (t, *J* = 7.2 Hz, 2H), 2.47-2.43 (m, 2H), 2.04 (t, *J* = 2.4 Hz, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 144.0, 132.6, 129.8, 118.9, 111.2, 82.4, 69.9, 36.3, 30.3, 19.8 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₁KNS [M+K]⁺ 240.0243, found 240.0243.

Benzyl(ethyl)sulfane 12a

Yield 102 mg, 77%, Appearance colorless liquid, $R_f = 0.5$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.34 (m, 4H), 7.30-7.28 (m, 1H), 3.77 (s, 2H), 2.48 (q, J = 11.3 Hz, 2H), 1.28 (t, J = 7.3 Hz, 3H) ppm, ¹³C NMR (125 **MHz, CDCl₃**): δ 138.7, 128.9, 128.5, 126.9, 35.9, 25.3, 14.5 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₉H₁₂KS [M+K]⁺ 191.0291, found 191.0291.

Ethyl(4-methylbenzyl)sulfane 12b

Yield 106 mg, 73%, **Appearance** colorless liquid, $R_f = 0.8$ (1% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 3.75 (s, 2H), 2.49 (q, J = 11.2 Hz, 2H), 2.39 (s, 3H), 1.29 (t, J = 7.4 Hz, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 136.5, 135.6, 129.2, 128.8, 35.6, 25.2, 21.1, 14.5 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₀H₁₄KS [M+K]⁺ 205.0448, found 205.0447.

4-((Ethylthio)methyl)benzaldehyde 12c

Yield 106 mg, 68%, **Appearance** colorless liquid, $R_f = 0.5$ (10% OHC EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 3.76 (s, 2H), 2.42 (q, J = 11.2 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 146.1, 135.3, 130.0, 129.5, 35.8, 25.5, 14.4 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₀H₁₃OS [M+H]⁺ 181.0682, found 181.0681.

4-((Ethylthio)methyl)benzonitrile 12d

Yield 98 mg, 63%, **Appearance** colorless liquid, $R_f = 0.5$ (10% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.54 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 3.69 (s, 2H), 2.37 (q, J = 11.3 Hz, 2H), 1.17 (t, J = 7.5 Hz, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 144.3, 132.0, 129.4, 118.6, 110.4, 35.4, 25.2, 14.1 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₀H₁₁KNS [M+K]⁺ 216.0243, found 216.0243.

Benzyl(butyl)sulfane 13a

Yield 110 mg, 71%, **Appearance** colorless liquid, $R_f = 0.6$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.41-7.37 (m, 4H), 7.33-7.29 (m, 1H), 3.78 (s, 2H), 2.50 (t, J = 7.5 Hz, 2H), 1.67-1.61 (m, 2H), 1.51-1.43 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.7, 128.8, 128.4, 126.8, 36.2, 31.3, 30.9, 21.9, 13.7 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₁H₁₆KS [M+K]⁺ 219.0604, found 219.0604.

4-((Butylthio)methyl)benzaldehyde 13b

Yield 124 mg, 68%, **Appearance** yellow liquid, $R_f = 0.4$ (10% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 9.96 (s,

OHC S Me

1H), 7.80 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 3.72 (s, 2H), 2.38 (t, J = 7.5 Hz, 2H), 1.54-1.48 (m, 2H) 1.37-1.30 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 191.9, 146.1, 135.3, 130.0, 129.5, 36.2, 31.3, 31.2, 21.9, 13.7 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₆KOS [M+K]⁺ 247.0553, found 247.0553.

4-((Butylthio)methyl)benzonitrile 13c

Yield 116 mg, 65%, **Appearance** colorless liquid, $R_f = 0.4$ (10% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, J

= 8.5 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 2.08 (s, 2H), 2.37 (t, J = 7.5 Hz, 2H), 1.52-1.46 (m, 2H) 1.37-1.29 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 144.4, 132.1, 129.4, 118.7, 110.5, 35.9, 31.1, 31.0, 21.8, 13.5 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₂H₁₅KNS [M+K]⁺ 244.0557, found 244.0556.

(4-Bromobenzyl)(ethyl)sulfane 14a

Yield 152 mg, 76%, **Appearance** colorless liquid, $R_f = 0.5$ (1% EtOAcpetroleum ether), ¹H NMR (**500 MHz, CDCl₃**): δ 7.45 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 3.68 (s, 2H), 2.44 (q, J = 11.0 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H) ppm, ¹³C NMR (**125 MHz, CDCl₃**): δ 137.7, 131.6, 130.6, 120.7, 35.3, 25.3, 14.4 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₉H₁₁BrKS [M+K]⁺ 268.9396, found 268.9398.

(4-Bromobenzyl)(propyl)sulfane 14b

Yield 156 mg, 73%, **Appearance** colorless liquid, $R_f = 0.6$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 3.64 (s, 2H), 2.37 (t, J = 7.5 Hz, 2H), 1.62-1.53 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 137.9, 131.6, 130.6, 120.8, 35.7, 33.5, 22.6, 13.6 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₀H₁₃BrKS [M+K]⁺ 282.9553, found 282.9552.

(4-Bromobenzyl)(butyl)sulfane 14c

Yield 158 mg, 70%, **Appearance** colorless liquid, $R_f = 0.6$ (1% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J =8.0 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 3.64 (s, 2H), 2.39 (t, J = 7.3 Hz, 2H), 1.56-1.50 (m, 2H), 1.41-1.33 (m, 2H), 0.89 (t, J = 7.5 Hz, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 137.8, 131.6, 130.6, 120.7, 35.7, 31.3, 31.2, 22.1, 13.8 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₁H₁₅BrKS [M+K]⁺ 296.9709, found 296.9709.

(4-Bromobenzyl)(pentyl)sulfane 14d

Yield 160 mg, 67%, **Appearance** colorless liquid, $R_f = 0.6 (1\%$ Br EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 3.67 (s, 2H), 2.41 (t, J = 7.5 Hz, 2H), 1.63-1.54 (m, 2H), 1.38-1.28 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H) ppm, **13C NMR (125 MHz, CDCl₃):** δ 137.9, 131.6, 130.6, 120.8, 35.8, 31.5, 31.1, 28.9, 22.4, 14.1 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₁₂H₁₇BrKS [M+K]⁺ 310.9866, found 310.9865.

(4-Bromobenzyl)(pentyl)sulfane 14e

Yield 164 mg, 66%, **Appearance** colorless liquid, $R_f = 0.6 (1\% \text{ Br}, \text{EtOAc-petroleum ether})$, ¹**H NMR (500 MHz, CDCl₃):** δ 7.45

(d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 3.67 (s, 2H), 2.41 (t, J = 7.5 Hz, 2H), 1.59-1.53 (m, 2H), 1.39-1.25 (m, 6H), 0.91 (t, J = 7.0 Hz, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 137.9, 131.7, 130.7, 120.8, 35.8, 31.5, 31.5, 29.3, 28.7, 22.7, 14.2 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₃H₁₉BrKS [M+K]⁺ 325.0022, found 325.0022.

Bis(4-methylbenzyl)sulfane 15a

Yield 162 mg, 77%, **Appearance** colorless solid, **MP**. 72-74 °C, R_f = 0.6 (1% EtOAc-petroleum ether), ¹**H NMR** (**500 MHz**, **CDCl**₃): δ 7.35 (d, J = 8.0 Hz, 4H), 7.28 (d, J = 7.5 Hz, 4H), 3.72 (s, 4H), 2.49 (s, 6H) ppm, ¹³C **NMR** (**125 MHz**, **CDCl**₃): δ 136.5, 135.2, 129.2, 128.9, 35.3, 21.2 ppm, **HRMS** (**ESI,Q-ToF**) *m/z*: calcd for C₁₆H₁₉S [M+H]⁺ 243.1201, found 243.1201.

Bis(2-bromobenzyl)sulfane 15b

Yield 266 mg, 82%, **Appearance** white solid, **MP**. 66-68 °C, $R_f = 0.5 (1\%)$ EtOAc-petroleum ether), ¹**H NMR** (**400 MHz, CDCl**₃): δ 7.56 (d, J = 8.0Hz, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.26 (d, J = 7.4 Hz, 2H), 7.13-7.09 (m, 2H),3.83 (s, 4H), ppm, ¹³C **NMR** (**100 MHz, CDCl**₃): δ 137.4, 133.2, 130.9, 128.8, 127.6, 124.8, 36.6 ppm, **HRMS** (**ESI,Q-ToF**) *m/z*: calcd for C₁₄H₁₂Br₂KS [M+K]⁺ 408.8658, found 408.8658.

Bis(2-bromobenzyl)sulfane 15c

Yield 282 mg, 87%, Appearance colorless solid, MP. 78-80 °C, R_f Br = 0.5 (1 % EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.4 Hz, 4H), 7.09 (d, J = 8.8 Hz, 4H), 3.56 (s, 4H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 136.5, 131.8, 131.2, 121.7, 42.7 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₄H₁₂Br₂KS [M+K]⁺ 408.8658, found 408.8658.

3,3'-(Thiobis(methylene))dibenzaldehyde 15d

Yield 188 mg, 80 %, **Appearance** white solid, **Mp** 74-76 °C, **R**_f= 0.4 (15% EtOAc-petroleum ether), ¹**HNMR** (**400 MHz**, **CDCl₃**): δ 9.98 (s, 2H),7.76-7.75 (m, 4H), 7.55-7.46 (m, 4H), 3.67 (s, 4H) ppm, ¹³**CNMR**

(**100 MHz, CDCl₃**): δ 192.2, 139.2, 136.8, 135.1, 129.9, 129.5, 128.9, 35.6 ppm, **HRMS** (**ESI,Q-ToF**) *m/z*: calcd C₁₆H₁₄NaO₂S [M+Na]⁺ 293.0607, found 293.0607.

сно

4,4'-(Thiobis(methylene))dibenzaldehyde 15e

Yield 199 mg, 85 %, Appearance White solid, Mp 108-110 °C , $\mathbf{R}_f = 0.4$ (15% EtOAc-petroleum ether), ¹HNMR (500 MHz, CDCl₃): δ 9.99 (s, 2H), 7.83 (d, J = 8 Hz, 4H), 7.42 (d, J = 8 Hz, 4H), 3.65 (s, 4H) ppm, ¹³CNMR (125 MHz, CDCl₃): δ 191.9, 145.1, 135.6, 130.2, 129.8, 35.7 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₆H₁₄NaO₂S [M+Na]⁺ 293.0612, found 293.0607.

4,4'-(Thiobis(methylene))dibenzonitrile 15f

Yield 182 mg, 79%, Appearance colorless solid, $R_f = 0.5 (10\%)$ EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.4 Hz, 4H), 7.37 (d, J = 8.4 Hz, 4H), 3.61 (s, 4H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 132.5, 129.8, 118.7, 111.3, 35.6 ppm, **HRMS (ESI,Q-ToF)** *m*/*z*: calcd for C₂₀H₁₆NaN₂S₂ [M+Na]⁺ 371.0652, found 371.0652.

Benzyl(4-methylbenzyl)sulfane 16a

Yield 146 mg, 74%, **Appearance** colorless liquid, $R_f = 0.8$ (1% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 739-7.35 (m, 4H), 7.32-7.28 (m, 1H), 7.25 (d, J = 7.5 Hz, 2H), 7.19 (d, J = 7.5 Hz, 2H), 3.66 (s, 2H), 3.64 (s, 2H), 2.41(s, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.4, 136.7,135.1, 129.3, 129.1, 129.0, 128.6, 127.1, 35.7, 35.4, 21.3 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₅H₁₇S [M+H]⁺ 229.1040, found 229.1040.

Benzyl(4-methylbenzyl)sulfane 16b

Yield 202 mg, 79%, **Appearance** colorless liquid, $R_f = 0.5$ (1% EtOAc-petroleum ether), ¹H NMR (**400 MHz, CDCl₃**): δ 7.46 (d, J =8.4 Hz, 2H), 7.35-7.28 (m, 5H), 7.17 (d, J = 8.0 Hz, 2H), 3.62 (s, 2H), 3.56 (s, 2H) ppm, ¹³ CNMR (**100 MHz, CDCl₃**): δ 137.9, 137.3, 131.7, 130.8, 129.1, 128.6, 127.2, 120.9, 35.7, 35.0 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₄H₁₃BrKS [M+K]⁺ 330.9553, found 330.9553.

3-((Benzylthio)methyl)benzaldehyde 16c

Yield 162 mg, 77%, **Appearance** colorless liquid, $R_f = 0.5$ (10% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 7.6, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.34-7.23 (m, 5H), 3.65 (s, 2H), 2.02 (s, 2H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 139.5, 137.7, 136.6, 135.0, 130.1, 129.2, 128.9, 128.6, 128.5, 127.2, 35.8, 35.1 sppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₅H₁₅OS [M+H]⁺ 243.0835, found 243.0835.

4-((Benzylthio)methyl)benzaldehyde 16d

Yield 168 mg, 80%, **Appearance** colorless liquid, $R_f = 0.5$ (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 7.82 (d, J = 7.2 Hz, 2H), 7.43 (d, J = 7.6, 2H), 7.34-7.27 (m 5H), 3.64 (s, 2H), 3.61 (s, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 145.6, 137.7, 135.3. 129.9, 129.7, 129.0, 128.6, 127.2, 35.8, 35.5 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₁₅H₁₅OS [M+H]⁺ 243.0835, found 243.0835.

4-(((4-Bromobenzyl)thio)methyl)benzaldehyde 17

Yield 248 mg, 89%, **Appearance** brown solid, **MP**. 58-60 °C, R_f Br CHO = 0.5 (10% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.95 (s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0, 4H), 7.10 (d, J = 8.4, 2H), 3.59 (s, 2H), 3.51 (s, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.6, 145.1, 136.7, 135.3, 131.6, 130.6, 129.9, 129.5, 120.9, 35.4, 35.0 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₅H₁₃BrOS [M+H]⁺ 322.9925, found 322.9925.

4-(((4-Bromobenzyl)thio)methyl)benzaldehyde 18

Yield 176 mg, 80%, **Appearance** white solid, **MP**. 64-66 °C, $R_f = M_{e}$ 0.4 (10 % EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.0, 2H), 7.18-7.14 (m, 4H), 3.63 (s, 2H), 3.59 (s, 2H), 2.37 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 144.1, 136.9, 134.3, 132.3, 129.7, 129.3, 128.9, 118.9, 110.8, 35.5, 35.2, 21.1 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₆H₁₅NNaS [M+Na]⁺ 276.0817, found 276.0816.

General procedure for the synthesis of dithio/disulfinyl compound

To the solution of bromomethyl benzaldehyde (1 equiv.) and potassium thioacetate (1 equiv.) in methanol (10 mL) in a two-neck round-bottom flask, stirred at room temperature for 2 h. After consumption of starting material, potassium carbonate, (3 equiv.) was added and the resulting reaction mixture was allowed to stir for 10 min. Further, dibromo compound (0.5 equiv.) was transferred to the reaction mixture and stirred at room temperature for 3 h. After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate (3×10 mL). The organic layer was separated, washed with brine solution and dried over anhydrous Na₂SO₄ then the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the dithio/disulfinyl compounds. (Reactions were carried out in 100 mg scale)

4-(((4-Bromobenzyl)thio)methyl)benzaldehyde 19a

Yield 146 mg, 61%, **Appearance** colorless sticky liquid, $R_f = 0.3$ (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.24 (m, 10H), 3.69 (s, 4H), 3.58 (s, 4H) ppm, ¹³C NMR (100 MHz,

CDCl₃): δ 138.3, 128.9, 128.7, 127.2, 36.4, 31.1 ppm, **HRMS** (**ESI,Q-ToF**) *m/z*: calcd for C₁₆H₁₈KS₂ [M+K]⁺ 313.0482, found 313.0481.

1,2-Bis((4-methylbenzyl)thio)ethane 19b

Yield 156 mg, 59%, Appearance colorless solid, MP. 96-

98 °C, $R_f = 0.3$ (1% EtOAc-petroleum ether), ¹H NMR (400

MHz, CDCl₃): δ 7.17-7.10 (m, 8H), 3.66 (s, 4H), 2.56 (s,

4H), 2.34 (s, 6H) ppm, **13C NMR (100 MHz, CDCl₃) δ** 136.9, 135.2, 129.4, 128.9, 36.1, 31.2, 21.3 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₁₈H₂₂KS₂ [M+K]⁺ 341.0795, found 341.0794.

1,2-Bis((2-Bromobenzyl)thio)ethane 19c

Yield 274 mg, 73%, **Appearance** colorless liquid, $R_f = 0.3$ (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.58 (s, 2H), 7.37-7.28 (m, 4H), 7.13 (s, 2H), 3.87 (s, 4H), 2.71 (s, 4H) ppm,

¹³C NMR (100 MHz, CDCl₃): δ 137.7, 133.2, 130.8, 128.8, 127.7, 124.6, 36.6, 31.7 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₆H₁₆Br₂KS₂ [M+K]⁺ 468.8692, found 468.8692.

1,2-Bis((3-bromobenzyl)thio)ethane 19d

Yield 292 mg, 78%, Appearance colorless solid, MP. 72-74 °C, Rf

= 0.3 (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ

7.45 (s, 2H), 7.39-7.37 (m, 2H), 7.21-7.17 (m, 4H), 3.64 (s, 4H), 2.56

(s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 140.6, 131.8, 130.3,

130.2, 127.5, 122.7, 35.9, 31.2 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₁₆H₁₆Br₂KS₂ [M+K]⁺ 468.8692, found 468.8693.

Br

S

3,3'-((Ethane-1,2-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 19e

Yield 204 mg, 71%, **Appearance** colorless liquid, $R_f = 0.3$ (10% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 2H) 7.79-7.76 (m, 4H), 7.57-7.47 (m, 4H), 3.76 (s, 4H), 2.58 (s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 139.5, 136.7, 134.9, 129.7, 129.4, 128.8, 35.9, 31.2 ppm, HRMS (ESI,Q-ToF) *m*/*z*: for C₁₈H₁₈NaO₂S₂ [M+Na]⁺ 353.0640, found 353.0640.

СНО

4,4'-((Ethane-1,2-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 19f

Yield 198 mg, 69%, Appearance colorless solid, MP.

106-108 °C, $R_f = 0.4$ (20% EtOAc-petroleum ether), ¹H

NMR (400 MHz, CDCl₃): δ 9.99 (s, 2H), 7.81 (d, J = OHC

8.0 Hz, 4H), 7.42 (d, J = 8.0 Hz, 4H), 3.74 (s, 4H), 2.56 (s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 145.4, 135.5, 130.2, 129.6, 36.4, 31.3 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₈H₁₈NaO₂S₂ [M+Na]⁺ 353.0640, found 353.0640.

4,4'-((Ethane-1,2-diylbis(sulfanediyl))bis(methylene))dibenzonitrile 19g

Yield 184 mg, 65%, **Appearance** colorless solid, **MP**. 104-106 °C, $R_f = 0.4$ (20% EtOAc-petroleum ether), ¹H NMR (**400 MHz, CDCl₃**): δ 7.59 (d, J = 8.0 Hz, 4H), 7.38 (d, J =

8.4 Hz, 4H), 3.72 (s, 4H), 2.55 (s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 132.5, 129.6, 118.7, 111.1, 36.3, 31.2 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₈H₁₆N₂NaS₂ [M+Na]⁺ 347.0647, found 347.0647.

1,2-Bis((4-bromobenzyl)thio)ethane 20a

Yield 324 mg, 86%, Appearance colorless solid, MP. 94-96

°C, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (500

MHz, CDCl₃): δ 7.42 (d, J = 8.0 Hz, 4H), 7.14 (d, J = 8.5 Hz, Br

4H), 3.63 (s, 4H), 2.54 (s, 4H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 137.3, 131.8, 130.6, 121.1, 35.9, 31.2 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₆H₁₆Br₂KS₂ [M+K]⁺ 468.8692, found 468.8691.

1,3-Bis((4-bromobenzyl)thio)propane 20b

Yield 322 mg, 83%, **Appearance** colorless liquid, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (400 MHz, _{Br}, ^S, ^S, ^S, ^S, ^{Br}, ^{CDCl₃): δ 7.43 (d, J = 8.0 Hz, 4H), 7.17 (d, J = 8.5 Hz, 4H), 3.61 (s, 4H), 2.45 (t, J = 7.6 Hz, 4H), 1.79-1.72 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 137.6, 131.7, 130.6, 120.9, 35.8, 30.3, 28.7 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₇H₁₈Br₂KS₂ [M+K]⁺ 482.8848, found 482.8848.}

1,4-Bis((4-bromobenzyl)thio)butane 20c

Yield 308 mg, 77%, Appearance colorless solid, MP.

74-76 °C, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H

NMR (500 MHz, CDCl₃): δ 7.42 (d, J = 8.0 Hz, 4H),

7.17 (d, J = 8.5 Hz, 4H), 3.62 (s, 4H), 2.35 (t, J = 6.5 Hz, 4H), 1.61-1.58 (m, 4H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 137.7, 131.7, 130.7, 120.9, 35.8, 30.9, 28.1 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₈H₂₀Br₂KS₂ [M+K]⁺ 496.9004, found 496.9004.

1,5-Bis((4-Bromobenzyl)thio)pentane 20d

Yield 314 mg, 76%, Appearance colorless sticky liquid, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, J = 8.0 Hz, 4H), 7.20 (d, J = 8.0 Hz, 4H), 3.65 (s, 4H), 2.39 (t, J = 7.3 Hz, 4H), 1.57-1.51 (m, 4H), 1.49-1.38 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 137.7, 131.6, 130.6, 120.7, 35.7, 31.2, 28.7, 27.9 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₉H₂₂Br₂KS₂ [M+K]⁺ 510.9161, found 510.9161.

(E)-1,4-Bis(benzylthio)but-2-ene 21a

Yield 200 mg, 71%, **Appearance** colorless liquid, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.36 (m, 8H), 7.30-7.28 (m, 2H), 5.56-5.54 (m, 2H), 3.73 (s, 4H),

3.08-3.07 (m, 4H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.3, 129.2, 129.1, 128.6, 127.1, 35.3, 32.9 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₁₈H₂₀KS₂ [M+K]⁺ 339.0638, found 339.0638.

(E)-1,4-Bis((4-bromobenzyl)thio)but-2-ene 21b

Yield 326 mg, 82%, Appearance white solid, MP. 84-86

°C, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (500

MHz, CDCl₃): δ 7.46 (d, J = 8.0 Hz, 4H), 7.21 (d, J =

7.5 Hz, 4H), 5.49 (s, 2H), 3.64 (s, 4H), 3.03 (d, J = 4.5 Hz, 4H), ppm, ¹³C NMR (125 MHz, **CDCl₃**): **δ** 137.4, 131.8, 130.8, 129.2, 121.0, 34.8, 32.9 ppm, **HRMS** (**ESI,Q-ToF**) *m/z*: calcd for C₁₈H₁₈Br₂KS₂ [M+K]⁺494.8848, found 494.8848.

(E)-4,4'-((But-2-ene-1,4-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 21c

Yield 326 mg, 72%, Appearance colorless solid,

MP. 102-104 °C, $R_f = 0.3$ (15% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 9.99 (s, 2H),

7.83 (d, J = 8.0 Hz, 4H), 7.47 (d, J = 8.0 Hz, 4H), 5.49 (t, J = 4.0 Hz, 2H), 3.72 (s, 4H), 3.02 (d, J = 4.0 Hz, 2H), 3.72 (s, 4H), 3.02 (d, J = 4.0 Hz, 2H), 3.72 (s, 4H), 3.02 (d, J = 4.0 Hz, 2H), 3.72 (s, 4H), 3.72 (s, 4H), 3.92 (d, J = 4.0 Hz, 2H), 3.72 (s, 4H), 3.92 (d, J = 4.0 Hz, 2H), 3.72 (s, 4H), 3.92 (d, J = 4.0 Hz, 2H), 3.92 (s, 4H), 3.92 (d, J = 4.0 Hz, 2H), 3.92 (s, 4H), 3 = 5.5 Hz, 4H), ppm, ¹³C NMR (125 MHz, CDCl₃): δ 191.9, 145.6, 135.5, 130.2, 129.8, 129.2, 35.3, 33.1 ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₂₀H₂₀NaO₂S₂ [M+Na]⁺ 379.0797, found 379.0796.

(E)-4,4'-((But-2-ene-1,4-diylbis(sulfanediyl))bis(methylene))dibenzonitrile 21d

Yield 204 mg, 67%, Appearance white solid, MP. 98-100 °C, $\mathbf{R}_f = 0.3$ (15% EtOAc-petroleum ether), ¹H **NMR (400 MHz, CDCl₃):** δ 7.61 (d, J = 8.0 Hz, 4H), 7.43 (d, J = 8.4 Hz, 4H), 5.49-5.48 (m, 2H), 3.70 (s,

4H), 3.03-3.02 (m, 4H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 132.4, 129.8, 129.0, 118.8, 110.9, 35.1, 32.9 ppm, **HRMS** (ESI,Q-ToF) *m/z*: calcd for C₂₀H₁₈NaN₂S₂ [M+Na]⁺ 373.0806, found 373.0806.

1,4-Bis(benzylthio)but-2-yne 22a

Yield 202 mg, 78%, **Appearance** dark brown liquid, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ

7.39-7.34 (m, 8H), 7.30-7.27 (m, 2H), 3.91 (s, 4H), 3.19 (s, 4H) ppm, ¹³C NMR (100 MHz, **CDCl₃**): **δ** 137.7, 129.1, 128.7, 127.3, 79.2, 35.6, 19.2 ppm, **HRMS** (**ESI,O-ToF**) *m/z*: calcd for C₁₈H₁₉S₂ [M+H]⁺ 299.0928, found 299.0928.

Br

сно

1,4-Bis((4-bromobenzyl)thio)but-2-yne 22b

Yield 322 mg, 81%, Appearance colorless solid, MP.

104-106 °C, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.4 Hz, 4H),

7.22 (d, *J* = 8.0 Hz, 4H), 3.81 (s, 4H), 3.13 (s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 136.8, 131.8, 130.8, 121.2, 79.2, 35.1, 19.2 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₈H₁₇Br₂S₂ [M+H]⁺ 456.9106, found 456.9107.

4,4'-((But-2-yne-1,4-diylbis(sulfanediyl))bis(methylene))dibenzaldehyde 22c

Yield 230 mg, 75%, Appearance brown solid, MP.

136-138 °C, R_f = 0.2 (15% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 10.00 (s, 2H), 7.85

(d, J = 8.0 Hz, 4H), 7.51 (d, J = 8.0 Hz, 4H), 3.92 (s, 4H), 3.16 (s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 144.9, 135.6, 130.2, 129.8, 79.2, 35.5, 19.3 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₂₀H₁₈NaO₂S₂ [M+Na]⁺ 377.0642, found 377.0643,

4,4'-((But-2-yne-1,4-diylbis(sulfanediyl))bis(methylene))dibenzonitrile 22d

Yield 196 mg, 65%, **Appearance** white fluffy solid, **MP**. 130-132 °C, $R_f = 0.2$ (15% EtOAc-petroleum ether), ¹**H NMR (500 MHz, CDCl₃): δ** 7.60 (d, J =

8.0 Hz, 4H), 7.44 (d, J = 8.5 Hz, 4H), 3.87 (s, 4H), 3.13 (s, 4H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 143.3, 132.5, 129.8, 118.8, 111.2, 79.1, 35.4, 19.3 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₂₀H₁₆NaN₂S₂ [M+Na]⁺ 371.0652, found 371.0652,

NC

1,4-Bis((benzylthio)methyl)benzene 23a

Yield 230 mg, 76%, Appearance colorless solid, MP. 60-62 °C, $\mathbf{R}_f = 0.7$ (5% EtOAc-petroleum ether), ¹HNMR (400

MHz, CDCl₃): δ 7.36-7.26 (m, 14H), 3.64 (s, 4H), 3.62 (s, 4H), ppm, ¹³CNMR (100 MHz, CDCl₃): δ 138.3, 136.9, 129.2, 129.1,128.6, 127.1, 35.8, 35.4 ppm, **HRMS (ESI,Q-ToF)** *m*/*z*: calcd for C₂₂H₂₃S₂ [M+H]⁺ 351.1237, found 351.1237.

Br

CN

1,4-Bis(((4-bromobenzyl)thio)methyl)benzene 23b

Yield 350 mg, 79%, Appearance brown solid, MP. Br 108-110 °C, $\mathbf{R}_f = 0.4$ (5% EtOAc-petroleum ether), $\mathbf{S}_{\mathbf{F}} = \mathbf{S}_{\mathbf{F}} = \mathbf{S}_{$

4,4'-(((1,4-Phenylenebis(methylene))bis(sulfanediyl))bis(methylene))dibenzaldehyde 23c

Yield 258 mg, 73%, Appearance Colorless solid, OHC MP. 134-136 °C, $\mathbf{R}_f = 0.4$ (15% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 2H), 7.83 (d, J = 8.4 Hz, 4H), 7.43 (d, J = 8.0 Hz, 4H), 7.21 (s, 4H), 3.65 (s, 4H), 3.59 (s, 4H), ppm, ¹³CNMR (100 MHz, CDCl₃): δ 191.9, 145.6, 136.8, 135.5, 130.2, 129.8, 129.3, 35.8, 35.6, ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for $C_{24}H_{22}NaO_2S_2$ [M+Na]⁺ 429.0953, found 429.0953.

4,4'-(((1,4-Phenylenebis(methylene))bis(sulfanediyl))bis(methylene))dibenzonitrile 23d

Yield 230 mg, 66%, **Appearance** colorless solid, **NC MP**. 156-158 °C, **R**_f = 0.4 (15% EtOAc-petroleum ether), ¹**H NMR (500 MHz, CDCl₃):** δ 7.59 (d, *J* = 8.0 Hz, 4H), 7.37 (d, *J* = 8.0 Hz, 4H), 7.19 (s, 4H), 3.62 (s, 4H), 3.58 (s, 4H), ppm, ¹³C NMR (125 MHz, CDCl₃): δ 144.0, 136.7, 132.4, 129.8, 129.3, 118.9, 111.0, 35.7(2-CH2 peaks merge) ppm, **HRMS (ESI,Q-ToF)** *m/z*: calcd for C₂₄H₂₀NaN₂S₂ [M+Na]⁺ 423.0963, found 423.0963.

((2,5-Dimethoxy-1,4-phenylene)bis(methylene))bis(benzylsulfane) 24a

Yield 242 mg, 68%, Appearance colorless solid, MP. 106-108 °C, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.32 (m, 8H), 7.28-7.25 (m, 2H), 6.78 (s, 2H), 3.79 (s, 6H), 3.72 (s, 4H), 3.68 (s, 4H) ppm, ¹³C

NMR (100 MHz, CDCl₃): δ 151.3, 138.6, 129.1, 128.5, 127.0, 126.2, 113.5, 56.3, 36.4, 30.2 ppm, **HRMS (ESI)** m/z calcd for C₂₄H₂₆NaO₂S₂ [M+Na]⁺ 433.1265, found 433.1265.

((2,5-Dimethoxy-1,4-phenylene)bis(methylene))bis((4-bromobenzyl)sulfane) 24b

Yield 346 mg, 70%, Appearance colorless solid, MP.

122-124 °C, $\mathbf{R}_f = 0.2$ (5% EtOAc-petroleum ether), ¹**H** NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.4 Hz, 4H), 7.19 (d, J = 8.4 Hz, 4H), 6.73 (s, 2H), 3.76 (s, 6H),

3.63 (s, 8H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 151.3, 137.7, 131.6, 130.8, 126.1, 120.7, 113.5, 56.3, 35.8, 30.2, ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₂₄H₂₄NaBr₂O₂S₂ [M+Na]⁺

4,4'-((((2,5-Dimethoxy-1,4-

590.9452, found 590.9453.

phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))dibenzaldehyde 24c

Yield 260 mg, 64%, Appearance yellow solid,

MP. 136-138 °C, $R_f = 0.4$ (15% EtOAcpetroleum ether), ¹**H NMR (400 MHz, CDCl₃):** δ 9.99 (s, 2H), 7.83 (d, J = 8.4 Hz, 4H), 7.48 (d,

J = 8.0 Hz, 4H), 6.74 (s, 2H), 3.75 (s, 6H), 3.74 (s, 4H), 3.65 (s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 151.3, 146.0, 135.4, 130.1, 129.7, 126.1, 113.5, 56.3, 36.4, 30.3 ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₂₆H₂₆NaO₄S₂ [M+Na]⁺ 489.1165, found 489.1164.

4,4'-(((((2,5-Dimethoxy-1,4-

phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))dibenzonitrile 24d

Yield 244 mg, 85%, Appearance colorless solid, MP. 150-152 °C, $R_f = 0.4$ (15% EtOAc-petroleum NC ether), ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J =8.0 Hz, 4H), 7.41 (d, J = 8.0 Hz, 4H), 6.72 (s, 2H),

3.75 (s, 6H), 3.71 (s, 4H), 3.64 (s, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 151.4, 144.5, 132.4, 129.8, 126.0, 119.0, 113.5, 110.9, 56.3, 36.3, 30.4, ppm, HRMS (ESI,Q-ToF) *m*/*z*: calcd for C₂₆H₂₅N₂O₂S₂ [M+H]⁺ 461.1352, found 461.1350.

Procedure for the synthesis of sulfone 25

To the solution of sulfide **2** (1 equiv., 100 mg) in methanol (10 mL) in a two-neck round-bottom flask, we added Oxone[®] (2.2 equiv., 588 mg) in water dropwise in the reaction mixture at room temperature and allowed the reaction mixture to stir for 3 h. After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate (3×10 mL). The organic layer was separated, washed with brine solution and dried over anhydrous Na₂SO₄ then the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the pure compound **25**.

((Allylsulfonyl)methyl)benzene 25

Yield 106 mg, 89% from 50 mg of compound **2**, **Appearance** yellow liquid, $R_f = 0.5$ (25% EtOAc-petroleum ether), ¹H NMR (400 MHz,

CDCl₃): δ 7.39 (s, 5H), 5.95-5.85 (m, 1H), 5.52-5.38 (m, 2H), 4.21 (s, 2H), 3.58 (d, *J* = 7.6 Hz, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 130.8, 129.1, 129.1, 127.7, 124.9, 124.9, 57.9, 55.9 ppm, HRMS (ESI, Q-ToF) *m/z*: calcd for C₁₀H₁₂NaO₂S [M+Na]⁺ 219.0450 found 219.0451.

General procedure for the synthesis of sulfoxides

To the solution of benzylbromides (1 equiv.) and potassiumthioacetate (1 equiv.) in methanol (10 mL) in a two-neck round-bottom flask, stirred at room temperature for 2 h. After consumption of starting material, potassium carbonate, (3 equiv.) was added and the resulting reaction mixture was allowed to stir for 10 min. Further, bromo compound (1 equiv.) was transferred to the reaction mixture and stirred at room temperature for 3 h. After completion of the reaction (TLC monitoring), for sulfoxide preparation, we added Oxone[®] (2.2 equiv.) in water dropwise in the same reaction mixture at room temperature and further allowed the reaction mixture to stir for next 3 h. After completion of the reaction (TLC monitoring), solvent was evaporated under reduced pressure, then the reaction mixture was diluted with water and extracted with ethyl acetate (3×10 mL). The organic layer was separated, washed with brine solution and dried over anhydrous Na₂SO₄ then the solution was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the sulfoxide compounds. (Reactions were carried out in 100 mg scale)

((Allylsulfinyl)methyl)benzene 26a

Yield 120 mg, 76% from 50 mg of compound 1, Appearance colorless liquid, *R_f* = 0.3 (30% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.387.29 (m, 5H), 5.97-5.88 (m, 1H), 5.49-5.38 (m, 2H), 4.02-3.95 (m, 2H), 3.45-3.41 (m, 1H), 3.293.25 (m, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 130.1, 129.9, 129.0, 128.4, 125.8, 123.8, 56.9, 54.2 ppm, HRMS (ESI,Q-ToF) *m/z*: calcd for C₁₀H₁₃OS [M+H]⁺ 181.0682 found 181.0681.

1-((Allylsulfinyl)methyl)-4-methylbenzene 26b

Yield 121 mg, 73%, **Appearance** colorless liquid, $R_f = 0.3$ (30% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.17 (s, 4H), 5.96-5.85 (m, 1H), 5.47-5.36 (m, 2H), 3.94 (d, J = 1.6 Hz, 2H), 3.43-3.38 (m, 1H), 3.27-3.22 (m, 1H), 2.34 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 130.1, 129.8, 126.8, 125.9, 123.8, 56.6, 54.1, 21.3 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₁H₁₅OS [M+H]⁺ 195.0838 found 195.0838.

1-((Allylsulfinyl)methyl)-2-bromobenzene 26c

Yield 170 mg, 75%, **Appearance** colorless liquid, $R_f = 0.2$ (30% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.59 (dd, J = 8.0, 1.0Hz, 1H), 7.37 (dd, J = 7.5, 1.5 Hz, 1H), 7.29 (td, J = 7.5, 1.0 Hz, 1H), 7.18 (td, J = 8.0, 1.5 Hz, 1H), 5.99-5.91 (m, 1H), 5.47-5.39 (m, 2H), 4.26 (d, J = 13.0, 1H), 4.01 (d, J = 12.5, 1H), 3.56-3.52 (m, 1H), 3.41-3.37 (m, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 133.3, 132.6, 130.6, 130.2, 128.0, 125.9, 125.1, 123.9, 57.9, 55.5 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₀H₁₂BrOS [M+H]⁺ 258.9787 found 258.9786.

1-((Allylsulfinyl)methyl)-3-bromobenzene 26d

Yield 176 mg, 78%, Appearance colorless liquid, $R_f = 0.2$ (30% EtOAcpetroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.43-7.40 (m, 2H), 7.19-7.18 (m, 2H), 5.90-5.82 (m, 1H), 5.44-5.33 (m, 2H), 3.90 (d, J = 13.0, 1H), 3.82 (d, J = 13.0, 1H), 3.43-3.39 (m, 1H), 3.29-3.25 (m, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 132.9, 132.4, 131.4, 130.4, 128.8, 125.5, 123.9, 122.8, 55.9, 54.6 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₀H₁₂BrOS [M+H]⁺ 258.9787 found 258.9788.

1-((Allylsulfinyl)methyl)-4-bromobenzene 26e

Yield 182 mg, 81%, Appearance white solid, MP. 98-100 °C, $R_f = 0.2$ (20% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.4, Hz, 2H), 5.89-5.78 (m, 1H), 5.42-5.30 (m, 2H), 3.88 (d, J =13.2, 1H), 3.79 (d, J = 13.2, 1H), 3.39-3.34 (m, 1H), 3.26-3.21 (m, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 131.9, 131.7, 129.0, 125.6, 123.8, 122.5, 55.8, 54.5 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₀H₁₂BrOS [M+H]⁺ 258.9787 found 258.9786.

4-((Allylsulfinyl)methyl)benzaldehyde 26f

Yield 132 mg, 73%, **Appearance** white solid, **MP**. 72-74 °C, $R_f = 0.2$ OHC (30% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 5.98-5.87 (m, 1H), 5.51-5.39 (m, 2H), 4.08 (d, J = 12.8, 1H), 3.98 (d, J = 13.2, 1H), 3.49-3.45 (m, 1H), 3.37-3.32 (m, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 137.0, 136.3, 130.9, 130.2, 125.6, 124.2, 56.6, 55.0 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₁H₁₃O₂S [M+H]⁺ 209.0631 found 209.0630.

4-((Allylsulfinyl)methyl)benzonitrile 26g

Yield 120 mg, 68%, **Appearance** white solid, **MP**. 82-84 °C, $R_f = 0.2$ (30% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 5.93-5.82 (m, 1H), 5.47-5.36 (m, 2H), 4.00 (d, J =12.0, 1H), 3.89 (d, J = 12.8, 1H), 3.47-3.42 (m, 1H), 3.35-3.30 (m, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 135.7, 132.5, 130.9, 125.3, 124.3, 118.4, 112.2, 56.1, 55.1 ppm, HRMS (ESI, **Q-ToF**) *m/z:* calcd for C₁₁H₁₂NOS [M+H]⁺ 206.0634 found 206.0634.

((Propa-1,2-dien-1-ylsulfinyl)methyl)benzene 27a

Yield 102 mg, 72%, **Appearance** yellow liquid, $R_f = 0.2$ (30% EtOAcpetroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.34 (m, 3H), 7.31-7.29 (m, 2H), 5.90 (t, J = 6.2 Hz, 1H), 5.21-5.17 (m, 1H), 5.12-5.07 (m, 1H), 4.14 (d, J =12.8, 1H), 4.06 (d, J = 12.4, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 207.1, 130.5, 129.5, 128.9, 128.5, 98.2, 82.0, 61.2 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₀H₁₀NaOS [M+Na]⁺ 201.0345 found 201.0344.

EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.17 (s,

1-Methyl-4-((propa-1,2-dien-1-ylsulfinyl)methyl)benzene 27b

Yield 118 mg, 71%, **Appearance** brown liquid, $R_f = 0.2$ (30%)

4H), 5.89 (t, J = 6.5 Hz, 1H), 5.21-5.17 (m, 1H), 5.12-5.08 (m, 1H),

4.09 (d, J = 12.5, 1H), 4.01 (d, J = 12.5, 1H) 2.35 (s, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 207.2, 138.5, 130.4, 129.9, 129.7, 126.3, 98.3, 82.1, 60.9, 21.4 ppm, HRMS (ESI, Q-ToF) m/z: calcd for C₁₁H₁₃OS [M+H]⁺ 193.0682 found 193.0681.

1-Bromo-4-((propa-1,2-dien-1-vlsulfinyl)methyl)benzene 27c

Yield 168 mg, 76%, **Appearance** yellow sticky liquid, $R_f = 0.2$ (30% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 5.87 (t, J = 6.2

Hz, 1H), 5.23-5.18 (m, 1H), 5.17-5.12 (m, 1H), 4.01 (s, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 207.3, 132.2, 132.1, 128.5, 122.9, 98.1, 82.4, 60.3 ppm, **HRMS** (ESI, **Q-ToF**) *m/z*: calcd for C₁₀H₁₀BrOS [M+H]⁺ 256.9630 found 256.9632.

4-((Propa-1,2-dien-1-ylsulfinyl)methyl)benzaldehyde 27d

Yield 134 mg, 69%, **Appearance** vellow sticky solid, $R_f = 0.2$ (30% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 5.89 (t, J = 6.4 Hz, 1H), 5.21-5.16 (m, 1H), 5.15-5.09 (m, 1H), 4.15-4.08 (m, 2H) ppm, ¹³C

NMR (100 MHz, CDCl₃): δ 207.2, 191.8, 136.2, 136.2, 131.2, 130.0, 98.1, 82.5, 60.6 ppm, **HRMS (ESI, O-ToF)** m/z: calcd for C₁₁H₁₁O₂S [M+H]⁺ 207.0474 found 207.0474.

4-((Propa-1,2-dien-1-ylsulfinyl)methyl)benzonitrile 27e

Yield 114 mg, 65%, **Appearance** yellow liquid, $R_f = 0.2$ (35%) EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.65

(d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 5.88 (t, J = 6.4 Hz, 3.2 Hz)

1H), 5.23-5.19 (m, 1H), 5.18-5.14 (m, 1H), 4.12 (d, J = 12.8 Hz, 2H), 4.04(d, J = 12.8 Hz, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 207.2, 134.9, 132.4, 131.3, 118.5, 112.4, 98.0, 82.7, 60.2 ppm, **HRMS (ESI, O-ToF)** *m/z:* calcd for C₁₁H₉NNaOS [M+Na]⁺ 226.0297 found 226.0297.

0

1-bromo-4-((prop-2-yn-1-ylsulfinyl)methyl)benzene 28

Yield 20 mg, 21%, **Appearance** brown solid, **MP**. 104-106 °C, $R_f = 0.3$ (30% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 4.18 (d, J = 13.0 Hz, 1H), 4.03 (d, J = 13.5 Hz, 1H), 3.37 (d, J = 2.5 Hz, 2H), 2.55 (t, J = 2.5 Hz, 1H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 132.3, 132.1, 127.8, 123.2, 77.3, 72.6, 55.2, 40.0 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₀H₁₀BrOS [M+H]⁺ 256.9630 found 256.9631.

4-((Prop-2-yn-1-ylsulfinyl)methyl)benzonitrile 29

Yield 26 mg, 15%, **Appearance** yellow solid, **MP**. 146-148 °C, $R_f = 0.3$ (35% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 4.25 (d, J = 12.8 Hz, 1H), 4.11 (d, J = 12.8 Hz, 1H), 3.47-3.32 (m, 2H), 2.57 (t, J = 6.6 Hz, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 134.3, 132.7, 131.3, 118.5, 112.7, 77.6, 72.4, 55.4, 40.5 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₁H₁₀NOS [M+H]⁺ 204.0478 found 204.0477.

1-Bromo-4-((but-3-en-1-ylsulfinyl)methyl)benzene 30

Yield 172 mg, 72%, **Appearance** colorless sticky solid, $R_f = 0.4$ (30% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 5.84-5.74 (m, 1H), 5.14-5.07 (m, 2H), 3.91 (s, 2H), 2.65-2.61 (m, 2H), 2.53-2.46 (m, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 134.9, 132.3, 131.8, 128.9, 122.8, 117.4, 57.6, 50.3, 26.8 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₁H₁₃BrKOS [M+K]⁺ 310.9502 found 310.9501.

1-Bromo-4-((pent-4-en-1-ylsulfinyl)methyl)benzene 31

Yield 172 mg, 69%, Appearance yellow solid, MP. 164-166 °C, $R_f = 0.3$ (30% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.48 (d, J = 7.0 Hz, 2H), 7.15 (d, J = 7.5 Hz, 2H), 5.76-5.68 (m, 1H), 5.02-4.99 (m, 2H), 3.89 (s, 2H), 2.56 (t, J = 7.8 Hz, 2H), 2.21-2.14 (m, 2H), 1.87-1.82 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 136.8, 132.2, 131.8, 129.1, 122.7, 116.3, 57.5, 50.4, 32.7, 21.8 ppm, HRMS (ESI, Q-ToF) *m/z*: calcd for C₁₂H₁₅BrNaOS [M+Na]⁺ 308.9919 found 308.9919.

$1\-((benzyl sulfinyl) methyl)\-4\-methyl benzene~32a$

Yield 190 mg, 88 %, Appearance white solid, MP. 96-98 °C, $R_f = 0.3$ (30% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.35 (m, 3H), 7.32-7.29 (m, 2H),7.19 (s, 3H), 3.95-3.84 (m, 4H), 2.37 (s, 3H), ppm, ¹³C NMR (100 MHz, CDCl₃): δ 138.2, 130.3, 130.2, 130.0, 129.7, 128.9, 128.3, 126.9, 57.1, 56.9, 21.2 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₅H₁₇OS [M+H]⁺ 245.0995 found 245.0994.

1-((Benzylsulfinyl)methyl)-3-bromobenzene 32b

Yield 250 mg, 93%, **Appearance** white solid, **MP**. 90-92 °C, $R_f = 0.3$ (30% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ

015

сно

7.46-7.43 (m, 1H), 7.39-7.34 (m, 4H),7.28-7.20 (m, 4H), 3.92 (s, 2H), 3.85 (d, *J* = 13.2 Hz, 1H), 3.74 (d, *J* = 13.2 Hz, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 133.0, 132.6, 131.5, 130.4, 130.1, 129.8, 129.1, 128.9, 128.5, 122.8, 57.6, 56.4 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₄H₁₃BrNaOS [M+Na]⁺ 330.9763 found 330.9762.

4-((Benzylsulfinyl)methyl)benzaldehyde 32c

Yield 200 mg, 89%, **Appearance** white solid, **MP**. 134-136 °C, $R_f = 0.2$ (30% EtOAc-petroleum ether), ¹H NMR (400 MHz,

CDCl₃): δ 9.97 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.36-7.34 (m, 3H), 7.28-7.26 (m, 2H), 3.98-3.94 (m, 3H), 3.83 (d, *J* = 12.8 Hz, 1H) ppm, ¹³C NMR (100 MHz, **CDCl₃):** δ 191.7, 137.2, 136.1, 130.9, 130.1, 129.7, 129.1, 128.6, 57.9, 56.8 ppm, **HRMS (ESI, Q-ToF)** *m/z:* calcd for C₁₅H₁₅O₂S [M+H]⁺ 259.0787 found 259.0787.

4-((Benzylsulfinyl)methyl)benzonitrile 32d

Yield 180 mg, 81%, **Appearance** white solid, **MP**. 126-128 °C, $R_f = 0.2$ (35% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.0 Hz, 2H), 7.39-7.36 (m, 5H), 7.29-7.27 (m, 2H), 3.96-3.92 (m, 3H), 3.78 (d, J = 12.8 Hz, 1H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 135.9, 132.6, 131.0, 130.1, 129.5, 129.2, 128.7, 118.5, 112.3, 58.1, 56.5 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₅H₁₄NOS [M+H]⁺ 256.0791 found 256.0790.

4-(((4-Methylbenzyl)sulfinyl)methyl)benzonitrile 33a

Yield 194 mg, 82%, Appearance white solid, MP. 108-110 °C,

 $R_f = 0.1$ (30% EtOAc-petroleum ether), ¹H NMR (500 MHz,

CDCl₃): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.20-7.16 (m, 4H), 3.98-3.89 (m, 3H), 3.77 (d, *J* = 13.0 Hz, 1H) 2.35 (s, 3H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 138.8, 136.1, 132.6, 131.1, 130.0, 129.9, 126.3, 118.5, 112.3, 57.9, 56.4, 21.3 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₆H₁₆NOS [M + H]⁺ 270.0947 found 270.0947.

Me

Br.

CN

CN

4-(((4-Bromobenzyl)sulfinyl)methyl)benzonitrile 33b

Yield 246 mg, 85%, Appearance white solid, MP. 162-164 °C,

 $R_f = 0.1$ (30% EtOAc-petroleum ether), ¹H NMR (500 MHz,

CDCl₃): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 3.95-3.89 (m, 2H), 3.85-3.79 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 135.7, 132.6, 132.3, 131.8, 131.0, 128.6, 123.0, 118.4, 112.4, 57.2, 56.8 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₅H₁₃BrNOS [M+H]⁺ 333.9896 found 333.9895.

4-(((3-formylbenzyl)sulfinyl)methyl)benzonitrile 33c

Yield 216 mg, 87%, Appearance white solid, MP. 124-126 °C,

 $R_f = 0.1$ (30% EtOAc-petroleum ether), ¹H NMR (500 MHz,

CDCl₃): δ 9.97 (s, 1H), 7.85-7.83 (m, 1H), 7.78 (s, 1H), 7.64-7.62

(m, 2H), 7.55-7.53 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 4.06-3.99 (m, 2H), 3.93-3.84 (m, 2H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 191.8, 136.9, 136.1, 135.5, 132.6, 131.1, 130.9, 130.9, 130.1, 129.8, 118.4, 112.4, 57.0, 56.9 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₆H₁₃NO₂S [M+H]⁺ 284.0739 found 284.0738.

Identidication of sulfides, sulfoxides and sulfones.

The confirmation of sulfoxide as the product was confirmed by the comparison of NMR spectral and mass data of sulfur, sulfoxide and sulfone. The unique characteristic of sulfoxide is that the sulfur atom is a stereogenic centre when different groups are attached on both the sides and it assumes a tetrahedral sp³ hybridization with a lone pair occupying one of the sp³ orbitals.² Therefore, proton attached to the carbon adjacent to sulfoxide group are

diastereotopic protons and hence further splitting is observed which is absent in sulfides and sulfones (Figure 1). This property led us to the confirmation that sulfoxides indeed are obtained as the product.

Figure 1. Comparison of chemical shift values (δ , ppm) and splitting pattern in ¹H NMR of sulfur, sulfoxide and sulfone derivatives.

Preparation of precursors for late-stage functionalization

We prepared bromo derivative of citronellol **S1** by using PBr₃ as a brominating agent in diethylether.³ We prepared bromo derivatives of thymol (**37a** and **37c**), Vitamin E (**37b**) and estrone (**37d**) by using dibromo derivatives (e.g. 1, 3-dibromopropane and 1,4-bis(bromomethyl)benzene) in the presence of potassium carbonate and DMF (Scheme 2).⁴

Scheme 2. Synthesis of bromo derivatives of biologically active compounds.

Synthesis and spectral data of compound S1 has been reported.²

General procedure for the synthesis of bromo derivatives (S3) of biologically active compounds

To the solution of biologically active compound (1 equiv.) in DMF (10 mL) in a two-neck roundbottom flask, we added K_2CO_3 (2.5 equiv.) in reaction mixture at room temperature. Further, we allowed the reaction mixture to stir for 30 min. followed by addition of dibromoderivative (1.1 equiv.). The reaction mixture was stirred for overnight. After completion of reaction (TLC monitoring), the reaction mixture was diluted with water and extracted with ethyl acetate (3×10 mL). The organic layer was separated, washed with brine solution and dried over anhydrous Na₂SO₄ then the filterate was concentrated under reduced pressure and purified by silica gel column chromatography by using petroleum ether and ethyl acetate to afford the bromoderivative of biologically active compounds. (Reactions were carried out in 100 mg scale)
2-(3-bromopropoxy)-1-isopropyl-4-methylbenzene S3a

Yield 150 mg, 83%, **Appearance** colorless sticky solid, $R_f = 0.8$ (petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.21 (d, J = 8.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.79 (s, 1H), 4.19 (t, J = 5.8 Hz, 2H), 3.73 (t, J = 6.5 Hz, 2H), 3.41-3.36 (m, 1H), 2.46-2.41 (m, 5H), 1.32 (d,

J = 7.0 Hz, 6H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 155.8, 136.5, 134.1, 126.0, 121.5, 112.4, 65.3, 32.8, 30.4, 26.7, 22.9, 21.5 ppm, HRMS (ESI, Q-ToF) *m/z*: calcd for C₁₃H₁₉BrNaO [M+Na]⁺ 293.0511 found 293.0512.

Spectral data of compound **S3b** has been reported.³

2-((4-(bromomethyl)benzyl)oxy)-1-isopropyl-4-methylbenzene S3c

Yield 175 mg, 79%, **Appearance** colorless solid, **MP**. 58-60 °C, $R_f = 0.7$ (5% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.44 (s, 4H), 7.14 (d, J = 7.6 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.77 (s, 1H), 5.07 (s, 2H), 4.53 (s, 2H), 3.42-3.35 (m, 1H), 2.34 (s, 3H), 1.24 (d, J

(8S,9R,13R,14R)-3-((4-(bromomethyl)benzyl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16decahydro-17H-cyclopenta[a]phenanthren-17-one S3d

Yield 136 mg, 81%, **Appearance** colorless solid, **MP**. 112-114 °C, $R_f = 0.4$ (15% EtOAc-petroleum ether), ¹H NMR (**400 MHz, CDCl**₃): δ 7.42 (s, 4H), 7.22 (d, J = 8.4 Hz, 1H), 6.79 (dd, J = 8.4, 2.8 Hz, 1H), 6.73 (d, J = 2.4 Hz, 1H), 5.04

Me

`Ме

Me

(s, 2H), 4.52 (s, 2H), 2.93-2.89 (m, 2H), 2.55-2.49 (m, 1H), 2.43-2.39 (m, 1H), 2.29-2.24 (m, 1H), 2.20-1.95 (m, 4H), 1.67-1.45 (m, 6H), 0.92 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 221.1, 156.8, 138.1, 137.8, 137.5, 132.6, 129.4, 127.9, 126.5, 115.0, 112.5, 69.6, 50.5, 48.2, 44.1, 38.5, 36.0, 33.4, 31.7, 29.8, 26.7, 26.1, 21.7, 14.0 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₂₆H₃₀BrO₂ [M+H]⁺ 453.1423 found 453.1422.

General procedure for the sulfide formation of biologically active derivatives.

Prepared according to the general procedure mentioned on Page S2. (Reactions were carried out in 100 mg scale)

(4-Bromobenzyl)(3,7-dimethyloct-6-en-1-yl)sulfane 34a

Yield 222 mg, 75%, **Appearance** colorless liquid, $R_f = 0.5$ (1% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.8 Hz, 2H), 5.12-5.08 (m, 1H), 3.67 (s, 2H), 2.49-2.35 (m, 2H), 2.01-1.93 (m, 2H), 1.71 (s, 3H), 1.62 (s, 3H), 1.59-1.48 (m, 2H), 1.42-1.36 (m, 1H), 1.33-1.27 (m, 1H), 1.19-1.12 (m, 1H), 0.87 (d, J = 6.8 Hz, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 137.9, 131.7, 131.4, 130.7, 124.8, 120.8, 36.9, 36.4, 35.8, 32.1, 29.3, 25.9, 25.6, 19.4, 17.8 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₁₇H₂₆BrS [M+H]⁺ 343.0912 found 343.0912.

(4-Bromobenzyl)(3-(2-isopropyl-5-methylphenoxy)propyl)sulfane 34b

Yield 280 mg, 82%, **Appearance** colorless liquid, $R_f = 0.2$ (2% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.73 (s, 1H), 4.09 (t, J = 6.0

Hz, 2H) 3.76 (s, 2H), 3.35-3.28 (m, 1H), 2.70 (t, J = 7.4 Hz, 2H),2.41 (s, 3H), 2.16-2.09 (m, 2H), 1.28 (d, J = 6.8 Hz, 6H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 137.6, 136.4, 133.9, 131.7, 130.6, 125.9, 121.3, 120.9, 112.2, 66.1, 35.8, 29.3, 28.2, 26.7, 22.9, 21.5 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₂₀H₂₆BrOS [M+H]⁺ 385.0862 found 385.0863.

(R)-6-(3-((4-Bromobenzyl)thio)propoxy)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chromane 34c

Yield 419 mg, 72%, Appearance yellow liquid, $R_f = 0.2$ (1% EtOAcpetroleum ether), ¹H NMR (400

MHz, CDCl₃): δ 7.45 (d, J = 8.4 Hz,

Me

Ме

Br

Me^

2H), 7.23 (d, *J* = 8.0 Hz, 2H), 3.72-3.69 (m, 4H), 2.69 (t, *J* = 7.2 Hz, 2H), 2.59 (t, J = 6.6 Hz, 2H), 2.16 (s, 3H), 2.11 (d, J = 2.8, 6H), 2.07-2.00 (m, 2H), 1.86-1.76 (m, 2H), 1.58-1.53 (m, 3H), 1.46-

1.38 (m, 4H), 1.32-1.26 (m, 11H), 1.19-1.09 (m, 6H), 0.91-0.87 (m, 12H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 148.2, 147.9, 137.8, 131.7, 130.7, 127.9, 125.9, 122.9, 120.9, 117.7, 74.9, 71.2, 40.2, 39.5, 37.7, 37.6, 37.6, 37.5, 35.9, 32.9, 32.9, 31.4, 30.0, 28.4, 28.1, 24.9, 24.6, 24.0, 22.9, 22.8, 21.2, 20.8, 19.9, 19.9, 12.9, 12.0, 11.9 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₃₉H₆₂BrO₂S [M+H]⁺ 675.3640 found 675.3641.

(4-Bromobenzyl)(4-((2-isopropyl-5-methylphenoxy)methyl)benzyl)sulfane 34d

Yield 348 mg, 88%, Appearance colorless sticky solid, R_f = 0.7 (5% EtOAc-petroleum ether), ¹H NMR (500 MHz, CDCl₃): δ 7.56-7.47 (m, 4H), 7.37 (d, J = 7.5 Hz, 2H),

7.24-7.21 (m, 3H), 6.87-6.83 (m, 2H), 5.13 (s, 2H), 3.67 (s,

z, 2H), 3.67 (s, Me Me Br

Me

2H), 3.62 (s, 2H), 3.49-3.43 (m, 1H), 2.41 (s, 3H), 1.31 (d, *J* =7.0 Hz, 6H) ppm, ¹³C NMR (125 MHz, CDCl₃): δ 155.9, 137.4, 137.3, 136.7, 136.5, 134.5, 131.7, 130.8, 129.3, 127.4, 127.4, 126.1, 121.6, 120.9, 112.8, 69.8, 35.4, 35.1, 26.7, 22.9, 21.5 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₂₅H₂₇BrKOS [M+K]⁺ 493.0598 found 493.0593.

(8S,9R,13R,14R)-3-((4-(((4-Bromobenzyl)thio)methyl)benzyl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one 34e

Yield 394 mg, 79%, Appearance colorless sticky solid, $R_f = 0.3$ (5% EtOAc-petroleum ether), ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.40 (m, 4H), 7.31 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.4 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 6.81

(dd, J = 8.6, 2.6 Hz, 1H), 6.77 (d, J = 2.4 Hz, 1H), 5.05 (s, 2H), 3.62 (s, 2H), 3.57 (s, 2H), 2.96-2.92 (m, 2H), 2.57-2.50 (m, 1H), 2.45-2.41 (m, 1H), 2.31-2.26 (m, 1H), 2.22-1.98 (m, 4H), 1.71-1.42 (m, 6H), 0.94 (s, 3H) ppm, ¹³C NMR (100 MHz, CDCl₃): δ 220.9, 156.9, 137.9, 137.6, 137.3, 136.2, 132.5, 131.6, 130.8, 129.3, 127.8, 126.5, 120.9, 115.0, 112.5, 69.8, 50.5, 48.1, 44.1, 38.4, 35.9, 35.4, 35.0, 31.7, 29.8, 26.6, 26.0, 21.7, 13.9 ppm, HRMS (ESI, Q-ToF) *m/z:* calcd for C₃₃H₃₆BrO₂S [M+H]⁺ 577.1598 found 577.1598.

References

[1] A. A. Heredia, A. B. Peñéñory, Eur. J. Org. Chem. 2013, 2013, 991–997.

[2] a) C. S. Adams, C. D. Weatherly, E. G. Burkea, J. M. Schomaker, *Chem. Soc. Rev.*, 2014, 43, 3136-3163; b) R. Y. Liu, Y. Zhou, Y. Yang, S. L. Buchwald, *J. Am. Chem. Soc.* 2019, 141, 2251–2256.

[3] a) V. A. vydrina, A.A. Kravchenko, M. P. yakovleva, N. M. Ishmuratova, G, Yu. Ishmuratov, chem. Nat. Compd. 2018, 54, 391-393; b) M. Pendke, S. Chandrasekhar, P. Mainkar, *Int. J. pharm.* 2015, 4, 16-23; c) C. S. Hanson, M. C. Psaltakis, J. J. Cortes, J. J. Devery *J. Am. Chem. Soc.* 2019, 141, 11870–11880.

[4] a) X. Xu, K. Zhang, P. Li, A. Lin, Org. Lett. 2018, 20, 1781–1784; b) Q. Xie, G. Dong, J. Am. Chem. Soc. 2021, 143, 14422–14427.

X-ray crystal data

1,2-Bis((4-bromobenzyl)thio)ethane 20a (CCDC No. 2168016)

Table	e S1	X-ray	crystal	lographie	e data an	d refinement	parameters	for 20a	(CCDC	C No. 21	168016)
-------	------	-------	---------	-----------	-----------	--------------	------------	----------------	-------	----------	---------

Identification code	SP-2-21	SP-2-21			
Empirical formula	C ₈ H ₈ BrS(monomer	C ₈ H ₈ BrS(monomer unit)			
Formula weight	216.11	216.11			
Temperature	150(2) K	150(2) K			
Crystal system	monoclinic	monoclinic			
Space group	$P2_1/c$	P21/c			
Unit cell dimensions	a = 16.6134(6) Å	$\alpha = 90^{\circ}$			
	b = 5.5697(2) Å	$\beta = 104.329(4)^{\circ}$			
	c = 9.1693(4) Å	$\gamma=90^\circ$			
Volume	822.06(6) Å ³				
Z	4				
Density (calculated)	1.746 g/cm ³				
Absorption coefficient (μ)	5.172 mm ⁻¹				
Absorption correction	Multi-scan				
Max. and Min. transmission	1.000-0.283				
F (000)	428.0	428.0			
Crystal size	0.426 x 0.245 x 0.12	0.426 x 0.245 x 0.124 mm ³			

Index ranges	$-19 \le h \le 19, -6 \le k \le 6, -9 \le l \le 10$
Two-theta range for data collection	5.062 to 49.984°
Reflections collected	4332
Diffraction radiation wavelength	0.71073
Independent reflections	1385 $[R_{(int)} = 0.0317]$
Completeness to $\theta = 24.998^{\circ}$	95%
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	1385/0/91
Goodness-of-fit on F ²	1.076
Final <i>R</i> indices [I>= 2σ (I)]	R1 = 0.0264, wR2 = 0.0598
<i>R</i> indices (all data)	R1 = 0.0341, wR2 = 0.0631
Largest diff. peak and hole	0.34/-0.40 e Å ⁻³

(E)-1,4-Bis((4-bromobenzyl)thio)but-2-ene (21b) (CCDC No. 2168017)

Identification code	SP-2-65
Empirical formula	C ₉ H ₉ BrS(monomer unit)
Formula weight	229.13
Temperature	304(2) K
Crystal system	monoclinic

Space group	P21/c			
Unit cell dimensions	a = 16.5752(12) Å	$\alpha = 90^{\circ}$		
	b = 6.3230(6) Å	$\beta = 100.622(8)^{\circ}$		
	c = 9.1422(8) Å	$\gamma=90^{\circ}$		
Volume	941.73(14) Å ³			
Z	4			
Density (calculated)	1.616 g/cm ³			
Absorption coefficient (μ)	4.520 mm ⁻¹			
Absorption correction	Multi-scan			
Max. and Min. transmission	1.000-0.281			
F (000)	456.0			
Crystal size	0.274 x 0.270 x 0.186 mm ³			
Index ranges	$-19 \le h \le 17, -7 \le k \le 7, -10 \le l \le 10$			
Two-theta range for data collection	6.912 to 49.996°			
Reflections collected	5115			
Diffraction radiation wavelength	0.71073			
Independent reflections	1641 [$R_{(int)} = 0.0379$]			
Completeness to $\theta = 24.998^{\circ}$	99%			
Refinement method	Full-matrix least-squares on F ²			
Data/restraints/parameters	1641/0/100			
Goodness-of-fit on F ²	1.029			
Final <i>R</i> indices [I>= 2σ (I)]	R1 = 0.0350, wR2 = 0.0716			
R indices (all data)	R1 = 0.0525, wR2 = 0.0800			
Largest diff. peak and hole	0.40/-0.48 e Å ⁻³			

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 2 in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 3 in CDCl3

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 5a in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 5b in CDCl₃

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 5c in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 5d in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 6a in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 6b in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 6c in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 6d in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 6e in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 6f in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 6g in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 6h in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 7a in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 7b in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 7c in CDCl3

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 7d in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 7e in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 8a in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 8b in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 8c in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 8d in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 8e in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 8f in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 8g in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 9a in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 9b in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 9c in CDCl3

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 9d in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 9e in CDCl₃

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 9f in CDCl3

1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 10a in CDCl3

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 10b in CDCl3

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 10c in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 10d in CDCl3

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 10e in CDCl3

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 11a in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 11b in CDCl₃

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 11c in CDCl3

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 11d in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 11e in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 12a in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 12b in CDCl3

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 12c in CDCl₃

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 12d in CDCl_3

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 13a in CDCl3

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 13b in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 13c in CDCl₃

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 14a in CDCl $_3$

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 14b in CDCl3

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 14c in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 14d in CDCl₃

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 14e in CDCl_3

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 15a in CDCl3

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 15b in CDCl3

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 15c in CDCl3

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 15d in CDCl3

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 15e in CDCl3

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 15f in CDCl3

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 16a in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 16b in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 16c in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 16d in CDCl3

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 17 in CDCl3

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 18 in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 19a in CDCl3

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 19b in CDCl $_3$

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 19c in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 19d in CDCl₃

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 19e in CDCl3

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 19f in CDCl3

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 19g in CDCl3

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 20a in CDCl3

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 20b in CDCl $_3$

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 20c in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 20d in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 21a in CDCl₃

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 21b in CDCl3

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 21c in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 21d in CDCl3

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 22a in CDCl3

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 22b in CDCl3

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 22c in CDCl₃

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 22d in CDCl3

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 23a in CDCl3

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 23b in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 23c in CDCl₃

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 23d in CDCl3

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 24a in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 24b in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 24c in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 24d in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 25 in CDCl₃

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 26a in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 26b in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 26c in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 26d in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 26e in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 26f in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 26g in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 27a in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 27b in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 27c in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 27d in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 27e in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 28 in CDCl₃

 1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 29 in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 30 in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 31 in CDCl₃

$^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 32a in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 32b in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100MHz) of 32c in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 32d in CDCl₃

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 33a in CDCl3

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 33b in CDCl3

 1H NMR (500 MHz) and ^{13}C NMR (125 MHz) of 33c in CDCl₃

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of S3a in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of S3c in CDCl₃

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of S3d in CDCl3

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (100 MHz) of 34a in CDCl₃

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 34b in CDCl₃

1H NMR (400 MHz) and ^{13}C NMR (100 MHz) of 34c in CDCl₃

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) of 34d in CDCl3

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of 34e in CDCl₃