Nitrogen defected polymeric carbon nitride for efficient photocatalytic H₂ evolution and RhB degradation under visible light irradiation

Man Li[‡], Xin Bai[‡], Xi Rao, Shaohui Zheng^{*}, and Yongping Zhang^{*}

School of Materials and Energy, Southwest University, Chongqing 400715, China

Figure S1. Calculated specific surface areas and molecular volumes of the three molecules.

Figure S2. Calculated total, partial, and overlapped population density of states of (a) pure, (b) N-defected, and (c) S-doped $g-C_3N_4$ with N defection at the B3LYP/6-31G* theory level. Solid line: HOMO energy; dashed line: LUMO energy.

photocalarysis from afferent incrutates.				
Photocatalyst	HER rate	Light source	Reaction	Reference
(precursors)	$[\mu mol/(h•g)]$		conditions	
2SCN (melamine and	4140	500 W Xe lamp, λ	3 wt% Pt	This work
trithiocyanuric acid)		> 420 nm	17 vol% TEOA	
g-C ₃ N ₄ microwire	1688	500 W Xe lamp, λ	1 wt% Pt	[5]
(melamine)		> 380 nm	17 vol% TEOA	
g-C ₃ N ₄ (urea)	3327	$300~W~Xe$ lamp, λ	3 wt% Pt	[4]
		>420 nm	TEOA	
g-C ₃ N ₄ (melamine and	3100	$300~W~Xe$ lamp, λ	3 wt% of Pt	[2]
urea)		≥ 400 nm	20 vol% TEOA	
g-C ₃ N ₄ (dicyandiamide)	310	$300~W~Xe$ lamp, λ	3 wt% Pt	[1]
		> 440 nm	10 vol% TEOA	
g-C ₃ N _{4-x} (melamine)	3068	500 W Xe lamp, λ	2 wt% Pt	[7]
		> 420 nm	10 vol% TEOA	
g-C ₃ N ₄ (melamine)	1288	$300~W~Xe$ lamp, λ	3 wt% Pt	[6]
		> 420 nm	15 vol% TEOA	
P/g-C ₃ N ₄ (melamine)	1596	300 W Xe lamp, λ	2 wt% Pt	[3]
		≥ 400 nm	20 vol% TEOA	

Table.S1 Comparison of the reported hydrogen evolution rate (HER) of g-C₃N₄ photocatalysts from different literatures.

References

[1] Niu, P.; Qiao, M.; Li, Y.; Huang, L.; Zhai, T. Distinctive defects engineering in graphitic carbon

nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy **2018**, 44, 73-81.

[2] Ruan, D.; Kim, S.; Fujitsuka, M.; Majima, T. Dfects rich g-C₃N₄ with mesoporous structure for efficient photocatalytic H₂ production under visible light irradiation. Appl. Catal. B **2018**, 238, 638-646. [3] Ran, J.; Ma, T.Y.; Gao, G.; Du, X.; Qiao, S. Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible light photocatalytic H₂ production. Energy Environ. Sci. **2015**, 8, 3708-3717.

[4] Martin, D.J.; Qiu, K.; Shevlin, S.A.; Handoko, A.D.; Chen, X.; Guo, Z.; Tang, J. Highly efficient photocatalytic H₂ evolution from water using visible light and structure-controoled graphitic carbon nitride. Angew. Chem. **2014**, 126, 9394-9399.

[5] Dou, H.; Long, D.; Zheng, S.; Zhang, Y. A facile approach to synthesize graphitic carbon nitride microwires for enhanced photocatalytic H₂ evolution from water splitting under full silar spectrum. Catal. Sci. Technol. **2018**, 8, 3599-3609.

[6] Tu, W.; Xu, Y.; Wang, J.; Zhang, B.; Zhou, T.; Yin, S.; Wu, S.; Li, C.; Huang, Y.; Zhou, Y.; Zou,Z.; Roberson, J.; Kraft, M.; Xu, R. Investgating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H₂ evolution and CO₂ reduction. ACS Sustainable Chem. Eng. **2017**, *5*, 7260-7268.

[7] Zhang, Y.; Gao, J.; Chen, Z. A solid-state chemical reduction approach to synthesize graphitic carbon nitride with tunable nitrogen defects for efficient visible-light photocatalytic hydrogen evolution, J. Colloid Interface Sci. **2019**, 535, 331-340.