Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

> Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI) for

Aluminium complexes containing indolyl-phenolate ligands as catalysts for

ring-opening polymerization of cyclic esters

Chi-Tien Chen* and Zi-Ling Lai

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

E-mail: ctchen@dragon.nchu.edu.tw

Contents

The linear relationship between the	e number-average	molecular	weight	(Mn)	and	the
monomer-to-initiator						
ratio			S2			
¹ H NMR spectrum of PCL-100 catal	yzed by 1 in the p	presence of	BnOH i	n tolue	ene at	t 80
°C			S2			
¹ H NMR spectrum of PLA-100 catalyz	ed by 1 in the prese	ence of BnO	H in tolu	iene at	100 º	\mathbf{C}
		S3				
Crystal structures data					S	34
Spectra data of ligand precursors and c	omplexes					S5

Figure S1 Polymerization of ϵ -caprolactone catalyzed by 1 in the presence of BnOH in toluene at 80 $^\circ C$

Figure S2 ¹H NMR spectrum of PCL-100 catalyzed by 1 in the presence of BnOH in toluene at 80 °C

Figure S3 1 H NMR spectrum of PLA-100 catalyzed by 1 in the presence of BnOH in toluene at 100 $^\circ$ C

	5
Formula	C ₂₈ H ₂₀ AlClN ₂ O ₂
Fw	478.89
Т, К	150(2)
Crystal system	Monoclinic
Space group	C_2/c
a, Å	15.5736(7)
b, Å	10.6795(7)
<i>c</i> , Å	14.9564(9)
α°	90
β°	113.626(3)
γ°	90
<i>V</i> , Å ³	2279.0(2)
Z	4
$\rho_{\rm calc}, {\rm Mg}/{\rm m}^3$	1.396
μ (Mo K α), mm ⁻¹	0.236
Reflections	22697
collected	
No. of parameters	155
$R1^a$	0.0324
w $R2^a$	0.0845
GoF ^b	1.038

 Table S1 Summary of crystal data for compound 5

 5

^{*a*} $RI = [\Sigma(|F_0| - |F_c|] / \Sigma |F_0|]; wR2 = [\Sigma w(F_0^2 - F_c^2)^2 / \Sigma w(F_0^2)^2]^{1/2}, w = 0.10.$ ^{*b*} $GoF = [\Sigma w(F_0^2 - F_c^2)^2 / (N_{rflns} - N_{params})]^{1/2}.$

Spectra data of ligand precursors and complexes

Figure S4. ¹H NMR of IndPh^HOH (L¹H)

Figure S5. ¹³C NMR of IndPh^HOH (L¹H)

Figure S6. ¹H NMR of IndPh^{Me}OH (L²H)

Figure S7. ¹³C NMR of IndPh^{Me}OH (L²H)

Figure S8. ¹H NMR of IndPh^{OMe}OH (L³H)

Figure S9. ¹³C NMR of IndPh^{OMe}OH (L³H)

Figure S10. ¹H NMR of IndPh^{Br}OH (L⁴H)

Figure S11. ¹³C NMR of IndPh^{Br}OH (L⁴H)

Figure S12. ¹H NMR of [IndHPh^HO]Al(CH₃)Cl (1)

Figure S13. ¹³C NMR of [IndHPh^HO]Al(CH₃)Cl (1)

Figure S14. ¹H NMR of [IndHPh^{Me}O]Al(CH₃)Cl (2)

Figure S15. ¹³C NMR of [IndHPh^{Me}O]Al(CH₃)Cl (2)

Figure S16. ¹H NMR of [IndHPh^{OMe}O]Al(CH₃)Cl (3)

Figure S17. ¹³C NMR of [IndHPh^{OMe}O]Al(CH₃)Cl (3)

449

Figure S19. ¹³C NMR of [IndHPh^{Br}O]Al(CH₃)Cl (4)

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2020

BrCl-Hi BrCl

Figure S20. ¹H NMR of [IndHPh^HO]₂AlCl (5)

Figure S21. ¹³C NMR of [IndHPh^HO]₂AlCl (5)

Figure S22. ¹H NMR of [IndHPh^{Me}O]₂AlCl (6)

Figure S23. ¹³C NMR of [IndHPh^{Me}O]₂AlCl (6)

Figure S24. ¹H NMR of [IndHPh^{OMe}O]₂AlCl (7)

Figure S25. ¹³C NMR of [IndHPh^{OMe}O]₂AlCl (7)

Figure S26. ¹H NMR of [IndHPh^{Br}O]₂AlCl (8)

Figure S27. ¹³C NMR of [IndHPh^{Br}O]₂AlCl (8)