Supporting Information

Prepartion and Lithium Storage of Core-Shell Honeycomb-Like Co₃O₄@C Microspheres

Linhe Yu¹, Qihao Yang¹, Guozhen Zhu^{1*}, Renchao Che^{2,3*}

1. Institute of Advanced Materials, Jiangxi Normal University, Nanchang

330022, P. R. China

2. Laboratory of Advanced Materials, Shanghai Key Lab of Molecular

Catalysis and Innovative Materials, Fudan University, Shanghai 200438,

PR China

3. Department of Materials Science, Fudan University, Shanghai 200438,

PR China

Keywords: Anode material, Co₃O₄, core-shell, honeycomb, lithium storage.

E-mail: zhuguozhen@jxnu.edu.cn, rcche@fudan.edu.cn

Figure S1. crystal structure of Co₃O₄

Figure S2. Thermogravimetric curve of CSHCo₃O₄@C microspheres Figure S3. (a-c) SEM images, (d) HRTEM image of CSHCo₃O₄@C microspheres

Figure S4. (a) SEM image of $CSHCo_3O_4@C$ microsphere, EDX mapping of (b) Co, (c) O, (d) C

Figure S5. N2 adsorption/desorption curves of CSHCo3O4@C and

Figure S6. Charge and discharge curves of (a) $CSHCo_3O_4@C$, (b)

FCo₃O₄, and (c) SCo₃O₄ microspheres

Figure S7. The coulombic efficiency of $CSHCo_3O_4@C$, SCo_3O_4 , and FCo_3O_4 microspheres at 0.2 C for 150 cycles

Figure S8. Cycling performance of $CSHCo_3O_4@C$ microspheres at 5 C after 1000 cycles

Figure S9. σ values of CSHCo₃O₄@C, SCo₃O₄, and FCo₃O₄ microspheres

Figure S10. The 1st, 2^{nd} , and 150^{th} electrochemical impedance spectroscopy of CSHCo₃O₄@C microspheres

Table S1. The rate capability comparison of the reported cobalt oxide materials and CSHCo₃O₄@C microspheres

Materials	Specific capacity	Current density	Reference
	(mA h g ⁻¹)	(mA g ⁻¹)	
CoO@N-C nanocubes	309	1000	[1]
G-Co ₃ O ₄ rose-spheres	462.3	4450	[2]
CNFs/Co ₃ O ₄	867	2000	[3]
3D hierarchical porous Co ₃ O ₄	987	1200	[4]
CSHC0 ₃ O ₄ @C	318.9	8900	This work

Materials	Specific capacity	Current density	Cycles	Reference
	$(mA h g^{-1})$	(mA g ⁻¹)		
Co ₃ O ₄ hexapods	166	90	100	[5]
CoO	458	200	80	[6]
nanoparticles				
Pristine CoO	259	71.6	50	[7]
nanorods				
Co ₃ O ₄ /carbon	534	100	20	[8]
nanowires				
CSHC0 ₃ O ₄ @C	1091.2	178	150	This work

Table S2. Electrochemical performance comparison of the reported cobalt oxide materials with different structure and CSHCo₃O₄@C microspheres

Table S3. The resistance values of $CSHCo_3O_4@C$, FCo_3O_4 , SCo_3O_4 microspheres after fitting of EIS data

Materials	R _s	$Q_1 (\mu F/cm^2)$	R _{ct}	$Q_2 (\mu F/cm^2)$
	(ohm/cm ²)		(ohm/cm ²)	
CSHCo ₃ O ₄ @C	1.38	1.86	82.15	2534.18
FCo ₃ O ₄	1.09	1.57	112.36	5867.39
SCo ₃ O ₄	1.21	1.73	135.78	1037.47

 $Q_2(\mu F/cm^2)$ CSHCo₃O₄@C R_s $Q_1 (\mu F/cm^2)$ R_{ct} (ohm/cm²) (ohm/cm^2) 1 st 3.57 0.76 63.37 3123.56 2nd 2.83 0.37 53.85 3908.51 150th 1.69 1.35 157.63 7325.56

Table S4. The resistance values of CSHCo₃O₄@C microspheres during cycling

References

[1] K. W. Xie, P. Wu, Y. Y. Zhou, et al. Nitrogen-Doped Cabon-Wrapped Porous Single-Crystalline CoO Nanocubes for High-Performance Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 13, 10602-10607.

[2] M. J. Jing, M. J. Zhou, G. Y. Li, et al. Graphene-Embedded Co₃O₄
Rose-Spheres for Enhanced Performance in Lithium Ion Batteries.
Applied Materials & Interfaces, 2017, 9, 11, 9662-9668.

[3] H. Wang, Y. W. Li, M. W. Wang, et al. Rationally Designed Hierarchical Porous CNFs/Co₃O₄ Nanofibers-Based Anode for Realizing High Lithium Ion Storage. RSC Advances, 2018, 8, 54: 30794-30801.

[4] X. G. Han, X. Han, W. W. Zhan, et al. Preparation of 3D Hierarchical Porous Co₃O₄ Nanostructures with Enhanced Performance in Lithium-Ion Batteries. RSC Advances, 2018, 8, 6: 3218-3224. [5] Rui X, Tan H, Sim D, et al. Template-Free Synthesis of Urchin-Like Co₃O₄ Hollow Spheres with Good Lithium Storage Properties[J]. Journal of Power Sources, 2013, 222: 97-102.

[6] Zhang M, Wang Y, Jia M. Three-Dimensional Reduced Graphene Oxides Hydrogel Anchored with Ultrafine CoO Nanoparticles as Anode for Lithium Ion Batteries[J]. Electrochimica Acta, 2014, 129: 425-432.

[7] Wu F D, Wang Y. Self-Assembled Echinus-Like Nanostructures of Mesoporous CoO Nanorod@CNT for Lithium-Ion Batteries[J]. Journal of Materials Chemistry, 2011, 21: 6636-6641.

[8] Zhang P, Guo Z P, Huang Y, et al. Synthesis of Co₃O₄/Carbon Composite Nanowires and Their Electrochemical Properties[J]. Journal of Power Sources, 2011, 196: 6987-6991.