Supporting Information

Effect of non-covalent self-dimerization on the spectroscopic and electrochemical properties of mixed Cu(I) complexes.

Joaquín Cáceres-Vásquez^a, Danilo H. Jara^b, Juan Costamagna^a, Fabián Martínez-Gómez^a, Carlos P. Silva^a, Luis Lemus^a, Eleonora Freire^{c.d,e}, Ricardo Baggio^c, Cristian Vera^{*a}, and Juan Guerrero^{*a}

- a. Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, correo 33, Santiago, Chile. Fax: 56-2-6812108 E-mail: juan.guerrero@usach.cl. cristian.veraoy@usach.cl.
- b. Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Chile.
- c. Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Avenida Gral. Paz 1499, 1650, San Martín, Buenos Aires, Argentina. E-mail: baggio@tandar.cnea.gov.ar
- d. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina and Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina.
- e. Member of CONICET

I.- Syntheses of complexes

General procedures

The new series of [Cu(NN'-R)(PPh₃)Br] complexes were synthesized by the template condensation method from equimolar amounts of reagents.

To a dichloromethane/methanol (10:1) mixture solution of CuBr, a DCM/MeOH (8:2) solution of pyridine-2-carbaldehyde was added at room temperature, and after continuous stirring for 20 min, corresponding 4-substituted-aniline in the same solvent's mixture was added, and the solution mixture was stirred for 30 min. Subsequently, a solution of triphenylphosphine (PPh₃) was added dropwise and stirred for one more hour at room temperature, forming a coloured solution. The volume of solution was reduced in a rotary evaporator and the concentrate was precipitate with diethyl ether and washed with 3x5 mL of diethyl ether. The slow evaporation from a relatively concentrated solution of dichloromethane/methanol (8:2) yield pure crystals of complexes ranging from orange to purple red color. However, for some complexes, adequate crystals for crystallographic studies were obtained by diffusion of diethyl ether vapor into a concentrated compound in dichloromethane solutions.

Structure of the [Cu(NN`-R)(PPh₃)Br] complexes with the labels used in the NMR assignments

1.1- [Cu(NN'-NO₂)(PPh₃)Br]. This complex was previously reported. (Jara H. D., Lemus L., Farías L., Freire E., Baggio R., Guerrero J., Eur. J. Inorg. Chem. 2012, 1579–1583)

Yield: 71 %. (Found: C, 57.0; H, 3.9; N, 6.2. Calc. for $C_{30}H_{24}BrCuN_3O_2P$: C, 56.9; H, 3.8; N, 6.6%) ¹H-NMR (CDCl₃, 10 mM, 298 K): δ /ppm = 8.73 (d, 1H, J_{H6,5} = 4.10 Hz, H₆), 8.59 (s, 1H, H_i), 8.12 (d, 2H, J_{H3',2'} = 8.86 Hz, H_{3'}), 7.91 (overlapping with H₃, H₄), 7.86 (overlapping with H₄, H₃), 7.62 (d, 2H, J_{2',3'} = 8,86 Hz, H_{2'}), 7.52 (m, 1H, H₅), 7.36 (st, 6H, H_a), 7.32 (t, 3H, J_{HY,β} = 7.1 Hz, H_Y), 7.24 (st, 6H, J_{Hβ,Y} = 7.1 Hz, J_{Hβ,α} = 8.60 Hz, H_β).¹³C {¹H} NMR (CDCl₃, 10 mM, 298 K): δ /ppm = 158.7 (C_i), 153.6 (C₁'), 150.4 (C₆), 149.4 (C₂), 146.8 (C₄'), 137.5 (C₄), 133.7 (C_α), 129.9 (C_Y), 126.7 (C_β), 127.98 (C₅), 128.0 (C₃), 124.9 (C₃'), 123.2 (C₂'). ³¹P {¹H} NMR (10 mM, CDCl₃): δ /ppm = -1.3.

1.2- [Cu(NN'-COCH₃)(PPh₃)Br]. CuBr (0.11 g, 0.79 mmol), pyridine-2-carbaldehyde (0.11 g, 0.79 mmol), 4-aminoacetophenone (0.08 g, 0.79 mmol), PPh₃ (0.21 g, 0.79 mmol). The slow evaporation of DCM/MeOH of solution gave red crystals. Yield: 87%. (Found: C, 61.2; H, 4.4; N, 4.6. Calc. for C₃₂H₂₇BrCuN₂OP: C, 61.1; H, 4.3; N, 4,45%). ¹H-NMR (CDCl₃, 8 mM, 298 K): δ/ppm = 8.66 (d, 1H, J_{H6,5} = 4.57 Hz, H₆), 8.52 (s, 1H, H_i), 7.88 (t, overlap with H_{3'}, H₄), 7.87 (d, 2H, J_{H3',2'} = 8.42 Hz, H_{3'}), 7.79 (d, 1H, J_{H3,4} = 7.50 Hz, H₃), 7.59 (d, 2H, J_{2',3'} = 8,42 Hz, H_{2'}), 7.46 (t, 1H, J_{H5,6} = 6.04 Hz, H₅), 7.37 (st, 6H, H_α), 7.32 (t, 3H, J_{HY,β} = 7.1 Hz, H_Y), 7.24 (st, 6H, J_{Hβ,Y} = 7.1 Hz, J_{Hβ,α} = 8.4 Hz, H_β), 2.60 (s, 3H, H_a).¹³C {¹H} NMR (CDCl₃, 8 mM, 298 K): δ/ppm = 158.5 (C_i), 157.8 (C_{1'}), 150.4 (C₆), 148.8 (C₂), 146.7 (C_{4'}), 137.4 (C₄), 133.60 (C_Y), 129.8 (C_α), 128.5 (C_β), 127.9 (C₅), 127.5 (C₃), 124.8 (C_{3'}), 122.8 (C_{2'}). ³¹P {¹H} NMR (CDCl₃, 0.02 M, 298 K): δ/ppm = -1.3.

- **1.3-** [Cu(NN'-H)(PPh₃)Br]. This complex was prepared using CuBr (0.24 g, 1.70 mmol), pyridine-2-carbaldehyde (0.18 g, 1.70 mmol), aniline (0.16 g, 1.70 mmol), PPh₃ (0.45 g, 1.70 mmol). The slow evaporation of DCM/MeOH of solution gave dark red crystals. Yield: 91 %. (Found: C, 61.1; H, 4.5; N, 4.6. Calc. for C₃₀H₂₅BrCuN₂P: C, 61.3; H, 4.3; N, 4,8%). ¹H-NMR (CDCl₃,10mM, 298 K): δ/ppm = 8.62 (d, 1H, J_{H6,5} = 4.03 Hz, H₆), 8.49 (s, 1H, H_i), 7.85 (t, 1H, J_{H4,3} = 7.50 Hz, H₄), 7.73 (d, 1H, J_{H3,4} = 7.50 Hz, H₃), 7.60 (d, 2H, J_{2',3'} = 7.14 Hz, H_{2'}), 7.42 (overlap with H_α, H₅), 7.29 (overlap with H_γ, H_{3'}), 7.23 (overlap with H_β, H_{4'}), 7.39 (st, 6H, H_α), 7.32 (t, 3H J_{Hγ,β} = 7.5 Hz, H_γ), 7.23 (st, 6H, J_{Hβ,γ} = 7.5 Hz, J_{Hβ,α} = 8.1 Hz, H_β).¹³C {¹H} NMR (CDCl₃, 10 mM, 298 K): δ/ppm = 155.5 (C_i), 150.3 (C₂), 150.0 (C₆), 148.2 (C_{1'}), 128.2 (C_{4'}), 137.2 (C₄), 129.4 (C_γ), 133.5 (C_α), 128.4 (C_β), 126.9 (C₃), 129.1 (C_{3'}), 127.0 (C₅), 126.9 (C_δ), 122.5 (C_{2'}). ³¹P{¹H} NMR (CDCl₃,0.02 mM, 298 K): δ/ppm=-1.6.
- **1.4-** [**Cu(NN'-CH₃)(PPh₃)Br].** This complex was prepared using CuBr (0.24 g, 1.66 mmol), pyridine-2-carbaldehyde (0.18 g, 1.66 mmol), 4-methylaniline (0.18 g, 1.66 mmol), PPh₃ (0.44 g, 1.66 mmol). The slow evaporation of DCM/MeOH of solution gave brick-red crystals. Yield: 89 %. (Found: C, 61.7; H, 4.7; N, 4.6. Calc. for C₃₁H₂₇BrCuN₂P: C, 61.85; H, 4.5; N, 4,65%) ¹H-NMR (CDCl₃, CDCl₃, 10 mM, 298 K): δ = 8.60 (d, 1H, J_{H5,6} = 4.03 Hz, H₆), 8.49 (s, 1H, H_i), 7.83 (t, 1H, J_{H4,3} = 7.50 Hz, H₄), 7.69 (d, 1H, J_{H3,4} = 7.50 Hz, H₃), 7.53 (d, 2H, J_{2',3'} = 7.87 Hz, H_{2'}), 7.39 (overlap with H_α, H₅), 7.39 (st, 6H, H_α), 7.31 (t, 3H, J_{Hγ,β} = 7.3 Hz, H_γ), 7.24 (st, 6H, J_{Hβ,γ} = 7.3 Hz, J_{Hβ,α} = 7.9 Hz, H_β), 7.08 (d, 2H, J_{H3',2'} = 7.87 Hz, H_{3'}), 2.34 (s, 6H, H_a). ¹³C {¹H} NMR (CDCl₃, 10 mM, 298 K): δ /ppm = 154.4 (C_i), 150.1 (C₆), 150.0 (C₂), 145.8 (C_{1'}), 137.1 (C₄), 133.7 (C_γ), 130.8 (C_{4'}), 129.8 (C₃), 129.5 (C_α), 128.4 (C_β), 126.8 (C₅), 126.5 (C_{3'}), 122.4 (C_{2'}), 21.1 (C_a). ³¹P{¹H} NMR CDCl₃, 10 mM, 298 K): δ /ppm = -1.6.
- **1.5-** [Cu(NN'-OCH₃)(PPh₃)Br]. This complex was prepared using CuBr (0.23 g, 1.62 mmol), pyridine-2-carbaldehyde (0.17 g, 1.62 mmol), 4-methoxyaniline (0.20 g, 1.62 mmol), PPh₃ (0.42 g, 1.62 mmol). The diffusion of diethyl ether vapor into the concentrated solution gave dark red crystals. Yield: 81 %. (Found: C, 60.4; H, 4.3; N, 4.2. Calc. for C₃₁H₂₇BrCuN₂OP: C, 60.25; H, 4.4; N, 4,5%)¹H-NMR (CDCl₃, CDCl₃, 10 mM, 298 K): δ = 8.60 (d, 1H, J_{H5,6} = 4.03 Hz, H₆), 8.50 (s, 1H, H_i), 7.80 (t, 1H, J_{H4,3} = 7.50 Hz, H₄), 7.68 (d, 1H, J_{H3,4} = 7.50 Hz, H₃), 7.65 (d, 2H, J_{2',3'} = 7.87 Hz, H_{2'}), 7.36 (overlap with H_α, H₅), 7.39 (st, 6H, H_α), 7.31 (t, 3H, J_{H7,β} = 7.3 Hz, H_γ), 7.24 (st, 6H, J_{Hβ,γ} = 7.3 Hz, J_{Hβ,α} = 7.9 Hz H_β), 6.78 (d, 2H, J_{H3',2'} = 7.87 Hz, H_{3'}), 3.80 (s, 6H, H_a). ¹³C {¹H} NMR (CDCl₃, 10 mM, 298 K): δ/ppm= 154.4 (C_i), 150.1 (C₆), 150.0 (C₂), 145.8 (C_{1'}), 137.1 (C₄), 133.7 (C_γ), 130.8 (C_{4'}), 129.8 (C₃), 129.5 (C_α), 128.4 (C_β), 126.8 (C₅), 126.5 (C_{3'}), 122.4 (C_{2'}), 21.1 (C_a). ³¹P{¹H} NMR (CDCl₃, 10 mM, 298 K): δ/ppm = -2.0.
- **1.6-** [Cu(NN'-N(CH₃)₂)(PPh₃)Br].This complex was prepared using CuBr (0.23 g, 1.58 mmol), pyridine-2-carbaldehyde (0.17 g, 1.58 mmol), N,N-dimethylbenzene-1,4-diamine(0.22 g, 1.58 mmol), PPh₃ (0.41 g, 1.58 mmol).Yield: 87 %. (Found: C, 57.2; H, 3.9; N, 6.6. Calc. for C₃₂H₃₀BrCuN₃P: C, 57.3; H, 4.0; N, 6,7%) The diffusion of diethyl ether vapor into the concentrated solution gave dark red crystals. ¹H-NMR (CDCl₃,10 mM, 298 K): δ = 8.53 (d, 1H, J_{H6,5} = 4.57 Hz, H₆), 8.48 (s, 1H, H_i), 7.76 (t, 1H, J_{H4,3} = 7.68 Hz, H₄), 7.68 (d, 2H, J_{2',3'} = 8,97 Hz, H_{2'}), 7.60 (d, 1H, J_{H3,4} = 7.68 Hz, H₃), 7.43 (st, 6H, H_α), 7.29 (overlap with H_γ, H₅), 7.31 (t, 3H, J_{Hγ,β} = 7.1 Hz, H_γ), 7.25 (st, 6H, J_{Hβ,γ} = 7.1 Hz, J_{Hβ,α} = 8.4 Hz, H_β), 6.56 (d, 2H, J_{H3',2'} = 8.97 Hz, H_{3'}), 2.97 (s, 6H, H_a). ¹³C {¹H} NMR (CDCl₃, 10 mM, 298 K): δ /ppm= 154.4 (C_i), 150.1 (C₆), 150.0 (C₂), 145.8 (C_{1'}), 137.1 (C₄), 133.7 (C_γ), 130.8 (C_{4'}), 129.8 (C₃), 129.5 (C_α), 128.4 (C_β), 126.8 (C₅), 126.5(C_{3'}), 122.4 (C_{2'}), 21.1 (C_a). ³¹P{¹H} NMR (CDCl₃, 10 mM, 298 K): δ /ppm = -2.6.
- 1.7- [Cu(NN'-CI)(PPh₃)Br]. This complex was prepared using CuBr (0.23 g, 1.61 mmol), pyridine-2-carbaldehyde (0.17 g, 1.61 mmol), 4-chloroaniline (0.21 g, 1.61 mmol), PPh₃ (0.42 g, 1.61 mmol), The solid is a brick-red crystal powder. Yield: 89 %. (Found: C, 57.8; H, 3.9; N, 4.6. Calc. for C₃₀H₂₄BrCuN₂PCI: C, 57,9; H, 3.9; N, 4.5%) ¹H-NMR (CDCl₃, 60 mM, 298 K): δ/ppm =), 8.63 (s, 1H, Hi), 8.53 (d, 1H, J_{H6,5} = 3,5 Hz, H₆), 7.79 (d, J_{H3,4} = 7.3 Hz, H₃), 7.71 (dd, 1H, J_{H3,4} = 7.3 Hz, J_{H4,5} = 8,7 Hz H₄),7.54 (d, 2H, J_{H2',3'} = 8.3 Hz, H_{2'}), 7.36 (t, 1H, overlap with H_α, H₅),7.38 (st, 6H, H_α),7.31 (t, 3H, J_{HY,β} = 7.1 Hz, H_γ),7.23 (st, 6H, J_{Hβ,γ} = 7.1 Hz, J_{Hβ,α} = 8.4 Hz, H_β), 7.12 (d, 2H, J_{3',2'} = 8,3 Hz, H_{3'}). ¹³C {¹H} NMR (CDCl₃, 20 mM, 298 K): δ/ppm =156.1 (C_i), 150.1 (C₆), 150.0 (C₂), 146.6 (C_{1'}), 137.2 (C₄), 133.6 (C_α), 133.3 (C_{4'}), 129.6 (C_γ), 129.3 (C_{3'}), 128.4 (C_β), 127.2 (C₅), 127.1 (C₃), 123.8 (C_{2'}).³¹P {¹H} NMR (CDCl₃, 20 mM, 298 K): δ/ppm =-1.7.

II.- Crystallography Information.

Table SI1. Experimental details for all [Cu(NN'-R)(PPh₃)Br] complexes.

	Cu(NN'-NO2)(PPh3)Br	Cu(NN'-COCH₃)(PPh₃)Br	Cu(NN'-H)(PPh₃)Br	Cu(NN'-CH₃)(PPh₃)Br	Cu(NN'-0CH ₃)(PPh ₃)Br	Cu(NN'-N(CH ₃) ₂)(PPh ₃)Br
Chemical formula	C ₃₀ H ₂₄ BrCuN ₃ O ₂ P	C ₃₂ H ₂₇ BrCuN ₂ OP	C ₃₀ H ₂₅ BrCuN ₂ P	C ₃₁ H ₂₇ BrCuN ₂ P	C ₃₁ H ₂₇ BrCuN ₂ OP	C ₃₂ H ₃₀ BrCuN ₃ P
Mr	632.94	629.97	587.94	601.96	617.97	631.01
Crystal system, space group	Monoclinic, C2/c	Monoclinic <i>, C</i> 2/ <i>c</i>	Triclinic <i>, P</i> -1	Monoclinic, C2/c	Triclinic <i>, P</i> -1	Monoclinic, <i>P</i> 2 ₁ /c
a, b, c (Å)	33.966 (2) 9.1945 (4) 20.1441 (13)	34.8404 (19), 9.2350 (3), 20.3611 (10)	8.8211 (3), 10.3594 (3) 16.2494 (4)	34.1246 (18), 9.3360 (3), 20.2331 (9)	9.8750 (3) 9.9744 (3) 15.7009 (5)	9.36873 (18) 12.5828 (3) 25.2196 (6)
α, β, γ (°)	90, 117.499 (8) 90	90, 118.270 (7), 90	77.816 (2) 84.816 (2) 65.413 (3)	90, 119.101 (7) 90	84.458 (3) 85.700 (3) 63.811 (3)	90 97.584 (2), 90
<i>V</i> (Å ³)	5580.2 (7)	5769.8 (6)	1319.84 (7)	5632.3 (5)	1380.36 (8)	2947.00 (11)
Ζ	8	8	2	8	2	4
μ (mm⁻¹)	2.30	2.23	2.42	2.27	2.32	2.18
No. of measured, independent, and observed [/> 2σ(/)] reflections	9502, 5845, 3091	30855, 6893, 3020	19767, 5160, 3527	16074, 5530, 2806	23131, 5396, 2814	25850, 5779, 4150
R _{int}	0.028	0.059	0.028	0.044	0.063	0.034
(sin θ/λ) _{max} (Å ⁻¹)	0.664	0.682	0.617	0.617	0.617	0.617
R[F ² > 2σ(F ²)], wR(F ²), S	0.041, 0.104, 0.86	0.069, 0.224, 1.03	0.030, 0.071, 0.92	0.034, 0.069, 0.78	0.036, 0.069, 0.80	0.030, 0.070, 0.96
No. of reflections	5845	6893	5160	5530	5396	5779
No. of parameters	343	344	316	326	335	345
No. of restraints	318	318	0	0	0	0
Δho_{max} , Δho_{min} (e Å ⁻³)	0.61, -0.34	1.08, -0.56	0.73, -0.43	0.68, -0.34	0.41, -0.29	0.30, -0.33

Table SI2	. ππ	bonds f	for [Cu	(NN'-R)(I	PPh₃)Br]	complexes.
-----------	------	---------	---------	-----------	----------	------------

R		Cg Cg	ccd(Å)	da(°)	ipd(Å)
-NO ₂	#1 (i) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i>	Cg2 Cg6 ⁱ	3.739(3)	21(3)	3.48(5)
-COCH₃	#1 (i) 1-x,1-y,1-z	Cg2 Cg6 ⁱ	3.824(6)	10.8(5)	3.48(14)
-H	#1 (i) 1-x,1-y,1-z	Cg2 Cg2 ⁱ	3.6471(17)	0.00	3.4516(11)
-CH₃	#1 (i) 1-x,-y,1-z	Cg2 Cg6 ⁱ	3.837(3)	20(9)	3.58(18)
-OCH₃	#1 (i) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i>	Cg2 Cg6 ⁱ	3.570(2)	1.89(17)	3.360(15)
-N(CH ₃) ₂	# 1 (i) - <i>x</i> +1, -y, -z+1	Cg2 Cg6 ⁱ	3.8153(14)	18.50(12)	3.5(2)

ccd: center-to-center distance; *da*: dihedral angle between rings; *ipd*: interplanar distance, or (mean) distance from one plane to the neighbouring centroid. For details, see Janiak, C. (2000). A critical account on π - π stacking in metal complexes with aromatic nitrogen-containing ligands., J. Chem. Soc., Dalton Trans., (21), 3885-3896.

Ring Codes:

Cg2: N1,C14,C24,C34,C44,C54;

Cg6: C15,C25,C35,C45,C55,C65.

R		D—H···A	D—H (Å)	H… A(Å)	D…A (Ű)	D —H···A(°)
	#2	C44-H44Br1 ⁱ	0.93	3.13	3.940(5)	146.1
-NO ₂	#3	C64-H64Br1 ⁱ	0.93	3.02	3.842(4)	148.3
	#4	C34-H34Br1 ⁱⁱ	0.93	2.90	3.664(5)	140.8
	#5	C43-H43Br1 ⁱⁱⁱ	0.93	3.04	3.766(4)	136.2
	# 6	C35—H35····Cg5 ^{iv}	0.93	2.83	3.673(6)	153
	[i] -x+1, -y+	1, -z; [ii] x, y+1, z ; [iii] x, -y	<i>v</i> +1, z+1/2,	[iv] = -x+1, y, -z	+1/2,	
	#2	C44-H44Br1 ⁱ	0.93	3.198	4.033(10)	150.5
-COCH₃	#3	C64-H64Br1 ⁱ	0.93	3.145	3.984(9)	151.0
	#4	C34-H34Br1 ⁱⁱ	0.93	2.97	3.715(10)	137.7
	#5	C41-H41Br1 ⁱⁱⁱ	0.93	3.08	3.815(7)	137.4
	[i] 1-x, 1-y,	1-z; [ii] x, y-1, z; [iii] x, -y+1	, z-1/2			
	#2	C34—H34····Cg4 ⁱ	0.93	2.83	3.348(3)	170
	#3	C32-H32Br1 ⁱⁱ	0.93	2.93	3.757(3)	148.7
-Н	#4	C33-H33Br1 ⁱⁱⁱ	0.93	2.98	3.728(3)	139.1
	#5	C25-H25Br1 ^{iv}	0.93	3.04	3.926(3)	158.9
	#6	C61-H61Br1	0.93	2.87	3.769(2)	162.8
	[i] 1-x,1-y,1-	-z; [ii] x, y+1, z; [iii] -x, -y+1	l, -z+1; [iv]	x+1, y, z		
	#2	C64-H64Br1 ⁱ	0.93	3.18	4.018(5)	150.9
-CH₃	#3	C34-H34Br1 ⁱⁱ	0.93	2.96	3.749(4)	143.4
	#4	C42-H42Br1 ⁱⁱⁱ	0.93	3.04	3.806(4)	140.3
	#5	C75-H75BBr1 ^{iv}	0.96	3.00	3.907(4)	158.8
	#6	C35—H35…Cg4 ^v	0.93	2.81	3.645(5)	150
	[i] 1-x, -y, 1-	-z; [ii] x, y-1, z; [iii] x, -y, z+	-1/2; [iv] -x-	+1, -y+1, -z+1;	[v] 1-x,y,3/2-z;	
	#2	C64-H64Br1 ⁱ	0.93	3.00	3.873(3)	156.7
-OCH₃	#3	C22-H22O1 ⁱⁱ	0.93	2.57	3.328(5)	139.2
	#4	C41-H41Br1 ⁱⁱⁱ	0.93	3.200	3.948(4)	138.9
	#5	C32-H32Br1 ^{iv}	0.93	3.173	4.068(6)	162.2
	[i] -x+2, -y+	1, -z; [ii] -x+2, -y, -z; [iii] x,	-1+y,z; [iv]	1+x,-1+y,z		
	#2	C64-H64Br1 ⁱ	0.93	3.10	3.870(2)	141.8
	#3	C44-H44Br1 ⁱ	0.93	3.16	3.921(2)	139.8
-N(CH ₃) ₂	#4	C32-H32Br1 ⁱⁱ	0.93	2.85	3.756(3)	166.3
	#5	C34-H34Br1 ⁱⁱⁱ	0.93	3.09	3.752(3)	129.6
	#6	C52—H52····Cg3 ⁱⁱ	0.93	2.79	3.618(3)	148
	#7	C41—H41…Cg6 ^{iv}	0.93	2.91	3.699(4)	144
	[i] -x+1, -y,	-z+1 [ii] -x+1, y+1/2, -z+1/2	[iii] x+1, y	, z; [iv] 1-x,1-y,	,1-z	

Table SI3. Hydrogen bonding geometry for [Cu(NN'-R)(PPh₃)Br] complexes.

Ring Codes:

Cg2: N1,C14,C24,C34,C44,C54; Cg5: C13,C23,C33,C43,C53,C63; Cg3: C11,C21,C31,C41,C51,C61; Cg6: C15,C25,C35,C45,C55,C65. Cg4: C12,C22,C32,C42,C52,C62;

Figure SI1. Molecular (a), dimeric (b) and packing (c) diagrams for **Cu(NN'-NO₂)(PPh₃)Br**. (a) Displacement ellipsoids drawn at a 30% level. (b) Bold dashed lines represent π - π bonds; simple gashed lines, C-H…Br bonds. Encircled, the NO₂ substituent. (c) One of the (100) planes in the structure. The [010] columnar arrays viewed in projection (the central one highlighted, for clarity). Non-covalent interactions are omitted for clarity. For details, see Jara H. D., Lemus L., Farías L., Freire E., Baggio R., Guerrero J., Eur. J. Inorg. Chem. 2012, 1579–1583

Figure SI2. Molecular (a), dimeric (b) and packing (c) diagrams for **Cu(NN'-COCH₃)(PPh₃)Br**. (a) Displacement ellipsoids drawn at a 30% level. (b) Bold dashed lines represent π - π bonds; simple dashed lines, C-H…Br bonds. Encircled, the COCH₃ substituent. (c) One of the (100) planes in the structure. The [010] columnar arrays viewed in projection (the central one highlighted, for clarity). Non-covalent interactions are omitted for clarity.

Figure SI3. Molecular (a), dimeric (b) and packing (c) diagrams for 4. **Cu(NN'-CH₃)(PPh₃)Br**. (a) Displacement ellipsoids drawn at a 30% level. (b) Bold dashed lines represent π - π bonds; simple dashed lines, C-H···Br bonds. Encircled, the CH₃ substituent. (c) One of the (100) planes in the structure. The [010] columnar arrays viewed in projection (the central one highlighted, for clarity). Non-covalent interactions are omitted for clarity.

Figure SI4. Molecular (a), dimeric (b), and packing (c) diagrams for 5. **Cu(NN'-OCH₃)(PPh₃)Br**. (a) Displacement ellipsoids drawn at a 30% level. (b) Bold dashed lines represent π - π bonds; simple dashed lines, C-H…Br bonds. Encircled, the OCH₃ substituent. (c) One of the (001) planes in the structure. The [010] columnar arrays viewed in projection (the central one highlighted, for clarity). Non-covalent interactions are omitted for clarity.

Figure SI5. Molecular (a), dimeric (b), and packing (c) diagrams for 3. **Cu(NN'-H)(PPh₃)Br.** (a) Displacement ellipsoids drawn at a 30% level. (b) Bold dashed lines represent π - π bonds; simple dashed lines, C-H…Br and C-H… π bonds. Encircled, the unsubstituted H site. (c) One of the (100) planes in the structure. The [010] columnar arrays viewed in projection (the central one highlighted, for clarity). Note the different columnar width as compared with the remaining structures, due to differences in dimer shape. Non-covalent interactions are omitted for clarity.

III- NMR results.

Table SI3a. ¹H-NMR data (δ /ppm) for NN'-NO₂ ligand in [Cu(NN'-NO₂)(PPh₃)Br] complex at several temperatures and concentrations, δ calculated for monomer and dimer and self-association constants.

T/K	298		290		280		270		260	
Proton	H_6	H_5	H_6	H_5	H_6	H_5	H_6	H₅	H_6	H ₅
	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H ₃
	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$
C/mM	_H _{3′}		$H_{3'}$		$H_{3'}$		$H_{3'}$		$H_{3'}$	
	8.770	7.558	8.765	7.563	8.764	7.569	8.761	7.576	8.758	7.583
2	7.960	7.864	7.964	7.856	7.968	7.851	7.972	7.852	7.977	7.856
2	8.529	7.601	8.531	7.611	8.536	7.619	8.544	7.626	8.554	7.630
	8.170		8.161		8.155		8.150		8.145	
	8.753	7.541	8.747	7.543	8.743	7.547	8.739	7.551	8.735	7.555
5	7.940	7.860	7.940	7.858	7.940	7.859	7.940	7.860	7.938	7.866
5	8.550	7.611	8.560	7.619	8.570	7.626	8.584	7.631	8.600	7.633
	8.145		8.136		8.128		8.120		8.113	
	8.730	7.519	8.728	7.524	8.723	7.525	8.718	7.527	8.714	7.528
10	7.913	7.862	7.914	7.861	7.912	7.861	7.908	7.866	7.903	
10	8.585	7.619	8.592	7.625	8.606	7.630	8.624	7.634	8.643	7.635
	8.117		8.112		8.102		8.093		8.084	
	8.715	7.503	8.711	7.507	8.705	7.507	8.703	7.509	8.699	7.508
15	7.895	7.864	7.895		7.890		7.877*		7.875*	
15	8.610	7.624	8.621	7.629	8.634	7.633	8.654	7.635	8.675	7.636
	8.098		8.091		8.083		8.072		8.062	
	8.705	7.494	8.701	7.495	8.696	7.495	8.691	7.494	8.686	7.495
20	7.883	7.881	7.878*		7.870		7.860	7.890	7.851	7.895
20	8.626	7.628	8.638	7.632	8.656	7.636	8.677	7.638	8.699	7.638
	8.086		8.079		8.068		8.057		8.045	
	8.697	7.485	8.695	7.489	8.690	7.488	8.684*	7.488	8.681	7.488
25	7.870		7.866*		7.859		7.850	7.891	7.842	7.897
20	8.641	7.630	8.650	7.633	8.667	7.636	8.688	7.638	8.711	7.637
	8.076		8.071		8.060		8.048		8.037	
	8.691	7.479	8.688	7.479	8.680*	7.478	8.676	7.477	8.672	7.476
30	7.860		7.852	7.889	7.845	7.889	7.836	7.894	7.827	7.901
	8.650	7.631	8.669	7.635	8.686	7.638	8.707	7.639	8.729	7.638
	8.070		8.058		8.048		8.036		8.025	
	8.690	7.479	8.675	7.477	8.673*	7.475	8.672	7.473	8.668	7.473
35	7.858		7.852		7.842		7.832	7.895	7.823	7.902
	8.651	7.631	8.669	7.636	8.688	7.640	8.712	7.641	8.735	7.640
	8.068		8.057		8.044		8.031		8.020	
	8.789	7.577	8.784	7.582	8.782	7.591	8.781	7.602	8.782	7.613
δм	7.978		7.980		7.992		8.006		8.017	
	8.503		8.503		8.503		8.499		8.507	
	8.199	7.040	8.186	7.004	8.180	7.054	8.180	7.0.40	8.178	7.0.47
	8.561	7.343	8.577	7.361	8.553	7.354	8.562	7.349	8.563	7.347
δ _D	7.653		7.650		7.644		7.649		7.632	
-	8.902		8.895		8.904		8.917		8.947	
	7.936		7.924		7.903		7.889		7.877	
	23	22	27	26	24	28	29	31	33	35
KD	15		16		20		28		31	
	16		20		24		31		33	
	33		29		28		31		34	
KD	21.8±7.	2	23.6 ±	5.4	24.8 ±	3.3	30.0 ±	1.4	33.2	± 1.5

T/K	250		240	2	30	2	20	
Proton	H_6	H_5	H_6	H_5	H_6	H₅	H_6	H_5
	H_4	H ₃	H_4	H₃	H_4	H₃	H_4	H ₃
	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$
C/mM	$\overline{H}_{3'}$	-	$H_{3'}$	-	$H_{3'}$	-	$H_{3'}$	-
	8.756	7.589	8.752	7.596	8.749	7.601	8.7459	7.6082
•	7.980	7.864	7.983	7.874	7.985	7.885	7.9863	7.8977
2	8.566	7.633	8.581	7.635	8,596	7.636	8.6137	7.6365
	8 141		7 874	11000	7 895		8 1316	110000
	8 731	7 558	8 727	7 561	8 723	7 565	8 7184	7 5688
_	7 936	7 874	7 933	7 885	7 929	7 895	7 9160*	1.0000
5	8 619	7 634	8 639	7 634	8 662	7 633	8 6890	7 6306
	8 105	1.001	8.098	7.001	7 895	1.000	8 0831	1.0000
	8 710	7 530	8 706	7 531	8 701	7 534	8 698	7 536
	7 895*	1.000	7 887*	1.001	7 877	7 913	7 870	7 921
10	8 663	7 635	8 685	7 633	8 709	7 630	8 736	7.626
	8 074	1.000	8.065	1.000	8 055	1.000	8.046	1.020
	8 690*	7 510	8 690	7 510	8.686	7 511	8 683	7 512
	7 863		7 854	7 907	7 846	7 915	7 837	7.072
15	7.635	7 635	8 721	7 632	8 743	7 628	8 767	7.624
	8 051	1.000	8 040	1.052	8 031	1.020	8 0213	7.024
	8.682	7 4 9 5	8 678	7 4 9 5	8 675	7 4 9 6	8 671	8 4 9 7
	7 842	7 903	7 831	7 912	7 820	7 921	7 809	7 931
20	8 723	7.636	8 748	7.632	8 775	7 626	8 804	7.600
	8 034	1.000	8 023	1.002	7 021	1.020	7 000	1.000
	8.676	7 / 87	8.672	7 / 87	8 660	7 / 88	8.667	7 / 80
	7 832	7 005	7 821	7.407	7 800	7.400	7 706	7.409
25	8 735	7.303	8 760	7 632	8 786	7.626	8 817	7.555
	8 026	7.055	8 014	1.052	0.700 8.002	1.020	7 080	7.010
	8.668	7 476	8 665	7 476	8.662	7 / 78	8 660	7 / 7 9
	7 817	7 000	7 806	7 0 1 7	7 706	7 0 2 /	7 787	7 030
30	9 750	7.303	9 776	7 622	0 700	7 626	9.916	7.550
	0.752	7.050	0.770	1.052	7 002	1.020	7 001	7.021
	0.014 9.665	7 /72	8.603	7 /72	<u> </u>	7 /75	2 659	7 477
	0.000	7.473	0.002	7.473	0.000 7 700	7.470	0.000	7.477
35	0 750	7.910	7.001	7.919	0 006	1.921	1.110	7.933
	0.700	1.031	0.702	1.031	0.000	0.024	0.033	7.010
	0.009	7 604	0 700	7 627	1.901	7647	1.9/0	7 660
\$	0./00	7.024	0.700	1.031	0.100	1.047	0./01	7.002
OM	0.027		0.047		0.002		0.000	
	0.000		0.014		0.011			
	0.100	7 0 4 0	0.102	7 252	0.109	7 255	0.190	7 969
c	0.073	7.348	8.307	1.353	0.0/0	7.300	0.001	7.302
0D	7.631		7.626				7.012	
	8.960		8.979		8.984		8.999	
	1.870	40	1.859	40	1.853		/.844	
	44.5	40	42	48	56	53	63	64
κ _D	39		51		61		/6	
	41		48	-	65		83	
	40		46		56		66	
KD	40.9 ± 2	2.1	47.0 ± 3	3.3	58.2 ± 4	.8	70.4 ± 8.	7

Table S13a continued.

* Assigned by COSY See Jara H. D., Lemus L., Farías L., Freire E., Baggio R., Guerrero J., Eur. J. Inorg. Chem. 2012, 1579–1583

T/K	220		235		250		265		280		298	
	H ₆	H_5	H_6	H_5	H_6	H_5	H_6	H_5	H_6	H_5	H_6	H_5
RLOID	^{on} H₄	H ₃	H_4	H ₃	H_4	H_3	H_4	H ₃	H_4	H_3	H_4	H_3
C/mM	Hi H	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$
C/IIIVI	∕H _{3'}	Ha	$H_{3'}$	Ha	$H_{3'}$	Ha	$H_{3'}$	Ha	$H_{3'}$	Ha	$H_{3'}$	Ha
	8.615	7.509	8.558	7.507	8.646	7.502	8.658	7.497	8.671	7.494	8.686	7.489
2	7.914	7.832*	7.917	7.816	7.915	7.799	7.912	7.787	7.908*	7.783	7.908*	7.794
2	8.582	7.615	8.558	7.616	8.539	7.615	8.524	7.613	8.514	7.604	8.510	7.592
	7.856*	2.627	7.864	2.621	7.870	2.613	7.876	2.606	7.884	2.601	7.895*	2.596
	8.581	7.451	8.600	7.451	8.613	7.454	8.626	7.455	8.640	7.456	8.657	7.463
8	7.846*		7.848*		7.859	7.837**	7.864	7.806*	7.871*	7.810	7.882*	
0	8.639	7.602	8.605	7.602	8.583	7.608	8.559	7.607	8.543	7.602	8.531	7.588
	7.801	2.605	7.813	2.599	7.826	2.596	7.838	2.591	7.851*	2.588	7.872*	2.586
	8.559	7.415	8.5/5	7.418	8.590	7.422	8.604*	7.426	8.620	7.432	8.636	7.435
14	1.789^	7.881	7.801^	7.864	7.828^	7.824^^	7.836^	7.806^	7.840^		1.858^	
	8.675	7.594	8.641	7.600	8.613	7.604	8.588	7.605	8.569	7.605	8.551	7.596
	0 5 4 7	2.392	9.560	2.300	0.576	2.384	1.010	2.381	7.832 [°]	2.380	1.847	Z.3/8
	0.047	7.390	0.000	7.390	0.0/0	7.403	0.000	7.407	0.000	1.412	0.02Z	1.418
20	2 605	7.090	1.101 9.650	7 505	1.190 9.621	7.601	7.000 9.602	7 604	1.02U 9.591	7 602	7.000 9.567	 7 505
	7748	2 584	7 764	2 570	7 781	2 577	7 706	7.004	7 812*	2 574	7 832*	2 573
	8 53/	7 375	8 5/17	7 378	8 563	7 38/	8 575	7 388	8 503	7 306	8 603	7.406*
	7 729*	7 899	7 7/0*	7 884	0.303 7 774*	7 868	7 781*	7.850	7 797*	1.550	7 820*	7.400
26	8 7 1 5	7 585	8 680	7 592	8 650	7.600	8 621	7.602	8 598	7 603	8 581	7 597
	7 726	2 576	7 749*	2 572	7 771*	2 570	7 780	2 568	7 800*	2 568	7 819*	2 567
	8 523	7 358	8 535	7 359	8 551	7 368	8 564	7 372	8 579	7 382*	8 593	7 398*
~ .	7.706*	7.909	7.729*	7.893	7.754*	7.880	7.760*	7.861	7.779*	7.848	7.804*	
34	8.735	7.582	8.698	7.589	8.668	7.598	8.639	7.601	8.615	7.603	8.551	7.596
	7.709*	2.570	7.729*	2.565	7.754*	2.565	7.767*	2.562	7.786*	2.562	7.847*	2.578
	8.632	7.542	8.650	7.535	8.662	7.527	8.673	7.516	8.684	7.511	8.699	7.505
0	7.950		7.958		7.950		7.929		7.924		7.920	
о _М	8.553		8.650		8.518		8.509		8.684		8.501	
	7.884	2.639	7.889	2.485	7.893	2.622	7.894	2.613	7.898	2.475	7.907	2.600
	8.380	7.155	8.365	7.140	8.388	7.155	8.388	7.129	8.395	7.153	8.363	7.210
0	7.329		7.461		7.520		7.323		7.407		7.424	
OD	8.962		8.946		8.904		8.916		8.878		8.938	
	7.490	2.491	7.532	2.485	7.581	2.487	7.565	2.481	7.578	2.475	7.546	2.452
	21	24.5	17	21	17	18.5	15	14	13	13	10	14
K-	16		24		23		8		8		14	
ND	21.5		16		14.5		10		13		5	
	21.5	24	21	22	22	19	15	15	12	11	8	7
KD	21.4 ± 3	3.0	20.2 ± 3	3.1	19.0± 3	3.1	12.8 ± 3	3.0	11.7 ± 2	2.0	9.7 ± 3	.7

Table SI3b. ¹H-NMR data (δ /ppm) for NN'-COCH₃ ligand in [Cu(NN'-COCH₃)(PPh₃)Br] complex at several temperatures and concentrations, δ calculated for monomer and dimer and self-association constants.

Figure SI6 a). ¹H-NMR spectra of [Cu(NN'-COCH₃)(PPh₃)Br] at 220 K to several concentration used for calculating self-association constants. Proton assignments are included. Similar behaviour is observed at all temperatures used in this study.

Figure SI6 b) Concentration effect on NN $-COCH_3$ ligand protons chemical shifts of $[Cu(NN'-COCH_3)(PPh_3)Br]$ at 220 K.

T/K	220		235		250		265		280		298	
Rroto	n H ₆	H_5	H_6	H_5	H_6	H_5	H_6	H_5	H_6	H₅	H_6	H_5
	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H ₃
\backslash	, H _i	$H_{2'}$	Hi	$H_{2'}$								
C/mM	H _{3'}		$H_{3'}$									
	8.563	7.461	8.580	7.454	8.597	7.450	8.614	7.447	8.629	7.442	8.646	7.438
2	7.893	7.777	7.887	7.752	7.884	7.735	7.881	7.724	7.875	7.719	7.870	7.724
2	8.542	7.615	8.520	7.611	8.507	7.607	8.498	7.603	7.875	7.600	8.492	7.591
	7.293*		7.288*		7.294*		7.300*		7.306*		7.299*	
	8.533	7.409	8.552*	7.410	8.570	7.413	8.590	7.415	8.606	7.416	8.623	7.416*
10	7.833*	7.789*	7.841	7.771	7.847	7.752	7.850	7.739	7.852	7.731	7.853	7.728
10	8.554	7.605	8.533	7.604	8.515	7.602	8.504	7.603	7.852	7.601	8.493	7.596
	7.259*		7.269*		7.271*		7.279*		7.288*		7.286*	
	8.502	7.358*	8.522	7.366*	8.541*	7.368*	8.562	7.379*	8.577	7.385*	8.597	7.384*
20	7.771	7.815	7.791*	7.791*	7.798*	7.773*	7.817	7.758	7.819	7.744	7.826	7.737
20	8.570	7.597	8.544	7.598	8.525	7.600	8.512	7.601	7.819	7.597	8.494	7.593
	7.230*		7.239*		7.250*		7.263*		7.272*		7.276*	
	8.486	7.328*	8.503	7.336*	8.523*	7.345*	8.543	7.349*	8.560	7.361*	8.579	7.364*
20	7.740	7.820	7.759	7.805*	7.772*	7.782*	7.789		7.801	7.752	7.810	7.744
30	8.579	7.595	8.550	7.595	8.531	7.597	8.516	7.599	7.801	7.596	8.495	7.592
	7.215*		7.224*		7.238*		7.246*		7.254*		7.261*	
	8.470	7.302*	8.486	7.311*	8.509	7.318*	8.531*	7.334*	8.545	7.341*	8.565	7.345*
40	7.710	7.833	7.735	7.812	7.748	7.800	7.774*		7.786	7.762	7.798	7.754
40	8.586	7.591	8.558	7.593	8.509	7.595	8.522	7.599	7.786	7.596	8.501	7.594
	7.200*		7.208*		7.221*		7.236*		7.246*		7.253*	
	8.459	7.284*	8.474	7.291*	8.496	7.306*	8.513*	7.313*	8.530	7.322*	8.552	7.332*
E0	7.687	7.841	7.713	7.822	7.736	7.806	7.755	7.789	7.768*	7.769*	7.784*	7.767*
50	8.594	7.587	8.563	7.589	8.542	7.595	8.525	7.597	7.768*	7.594	8.502	7.592
	7.191*		7.196*		7.213*		7.223*		7.233*		7.244	
	8.574	7.480	8.589	7.468	8.607	7.465	8.622	7.458	8.638	7.450	8.654	7.447
S	7.915		7.904	7.745	7.900		7.384		7.883	7.715	7.877	
OM	8.538		8.516		8.504		8.496		8.491			
	7.306		7.296		7.302		7.303				7.032	
	8.257	6.940	8.199	6.872	8.264	6.964	8.221	6.918	8.241	6.794	8.275	6.953
8_	7.290		7.312	7.968	7.382		7.384		7.396	7.942	7.481	
OD	8.747		8.659		8.666		8.621		8.728			
	7.036		6.870		7.023		6.892		6.975		7.010	
	9	9	6	6	7	7	5	5	5	3	5	4
k	9		7	8	7		5		4	4	4	
rνD	5		7		4		4					
	13		4		7		4		4		3	
K _D	9.0 ± 2.	.8	6.3 ± 1	.4	6.4 ± 1	.3	4.6 ± 0.	.5	4.0 ± 0	.7	4.0 ± 0	.8

Table SI3c. ¹H-NMR data (δ /ppm) for NN'-H ligand in [Cu(NN'-H)(PPh₃)Br] complex at several temperatures and concentrations, δ calculated for monomer and dimer and self-association constants.

Figure SI7 a). ¹H-NMR spectra of [Cu(NN'-H)(PPh₃)Br] at 220K to several concentration used for calculated selfassociation constants. Proton assignments are included. Similar behavior is observed at all temperatures used in this study.

Table SI3d. ¹H-NMR data (δ /ppm) for NN'-CH₃ ligand in [Cu(NN'-CH₃)(PPh₃)Br] complex at several temperatures and concentrations, δ calculated for monomer and dimer and self-association constants.

T/K	220		235		250		265		2	280		298	
Protor	ו H ₆	H ₅	H ₆ H	5	H ₆ F	1 5	H ₆	H_5	H_6		H ₅	H ₆	H ₅
	H_4	H ₃	H ₄ H	3	H ₄ F	l 3	H_4	H₃	H_4		H ₃	H_4	H ₃
	Hi	H _{2'}	H _i H	2'	H _i F	1 _{2'}	Hi	$H_{2'}$	Hi		$H_{2'}$	Hi	$H_{2^{i}}$
C/mM	∖H _{3'}	H _a	H _{3'} H	a	Н _{3'} Н	- la	$H_{3'}$	Ha	Η _{3'}		Ha	H _{3'}	Ha
	8.538	7.444'	8.555	7.435*	8.571	7.430*	8.590	7.42	24* 8	3.607	7.427*	8.627	7.418*
0	7.884	7.737	7,877	7.717	7.870	7.699	7.859	7.68	87 7	7.863	7.686	7.858	7.689
2	8.542	7.551	8.522	7.546	8.506	7.542	8.496	7.54	40 E	3.493	7.535	8.490) 7.527
	7.084	2.328	7.082	2.330	7.084	2.333	7.090	2.33	86 7	7.097	2.342	7.108	3 2.348
	8.497	7.373	8.518	7.378*	8.538	7.379*	8.557	7.38	85* 8	3.575	7.384*	8.593	3 7.389*
10	7.812	7.751	7.820	7.734	7.826	7.718	7.828	7.70)4 7	7.832	7.696	7.833	3 7.692
10	8.554	7.539	8.532	7.539	8.514	7.536	8.502	7.53	86 8	3.494	7.534	8.489	7.527
	7.036	2.305	7.046	2.312	7.055	2.317	7.063	2.32	24 7	7.072	2.330	7.082	2.336
	8.467	7.329'	8.487	7.332*	8.507	7.339*	8.527	7.34	5* 8	3.546	7.351*	8.567	7.358*
20	7.737	7.766			7.789	7.732	7.795	7.71	8 7	7.802	7.708	7.808	3 7.702
20	8.566	7.533	8.540	7.532	8.521	7.532	8.507	7.53	82 8	3.497	7.531	8.490	7.526
	7.004	2.290	7.017	2.298	7.029	2.305	7.040	2.31	1 7	7.050	2.318	7.063	3 2.323
	8.448	7.296'	8.468	7.301*	8.485	7.313*	8.504	7.32	2* 8	3.526	7.328*	8.547	7.335*
20	7.716	7.778					7.775	7.72	26 7	7.781	7.714	7.790	7.707
30	8.573	7.528	8.545	7.529	8.525	7.530	8.511	7.53	30 E	3.499	7.529	8.491	7.524
	6.984	2.280	7.000	2.289	7.013	2.296	7.025	2.30)3 7	7.036	2.310	7.049	2.318
	8.447	7.295'	8.466	7.295*	8.487	7.307*	8.503	7.31	7* 8	3.525	7.327*	8.547	7.333*
40	7.711	7.779					7.771	7.72	25 7	7.780	7.717	7.789	7.708
40	8.573	7.528	8.546	7.528	8.526	7.529	8.512	7.53	- 00		7.529	8.492	2 7.524
	6.981	2.279	6.996	2.287	7.011	2.295	7.022	2.30)2 7	7.035	2.310	7.048	3 2.317
	8.446	7.288'	8.463	7.294*	8.482	7.306*	8.500	7.31	6* 8	3.521	7.323*	8.544	7.326*
60	7.710	7.780					7.770	7.72	28 7	7.777	7.716	7.789)
00	8.574	7.527	8.547	7.527	8.527	7.528	8.513	7.52	29 8	3.499	7.528	8.491	7.523
	6.979	2.278	6.994	2.286	7.007	2.293	7.020	2.30	00 7	7.032	2.308	7.047	2.317
	8.575	7.503	8.585	7.479	8.592	7.467	8.611	7.45	53 8	3.630	7.456	8.649	7.434
c	7.960	7.727					7.882	7.67	757	7.885	7.678	7.874	
о _М	8.533	7.563	8.515	7.551	8.499	7.546	8.533	7.54	- 2		7.536		7.528
	7.128	2.348	7.109	2.343	7.105	2.343	7.106	2.34	4 7	7.114	2.349	7.126	2.355
	8.382	7.187	8.392	7.181	8.406	7.207	8.421	7.22	20 8	3.453	7.246	8.480	7.226
<u> </u>	7.593	7.823					7.687	7.75	6 7	7.699	7.747	7.884	↓
ðd	8.599	7.514	8.563	7.513	8.540	7.519	8.599	7.51	9 -		7.515		7.510
	6.911	2.246	6.925	2.251	6.943	2.260	6.961	2.26	67 6	5.980	2.278	7.001	2.289
	69	68	50	47	34	47	32	38	3	39	45	42	21
K-	77	29					34	52	3	31	30	30	
۳ND	43	104	49	45	53	48	43	31	-		7		4
	75	74	48	46	40	39	35	28	3	38	32	46	33
KD	67.4±2	22.7	47.5 ±	1.9	43.5 ±	7.0	36.6 ±	7.7	3	31.7±1	2.1	2	9.3 ± 15.3

Figure SI8 a) ¹H-NMR spectra of [Cu(NN'-CH₃)(PPh₃)Br] at 220 K for several concentrations used for calculating self-association constants. Proton assignments are included. Similar behavior is observed at all temperatures used in this study.

Figure SI8 b) Concentration effect on NN $-CH_3$ ligand protons chemical shifts of [Cu(NN $-CH_3$)(PPh₃)Br] complex at 265 K and **c**) at 220 K.

Figure SI9 a).¹H-NMR spectra of $[Cu(NN'-CH_3)(PPh_3)Br]$ of 2 mM at several temperatures. Proton assignments are included. Similar behavior is observed at all concentrations used in this study.

T/K	220		235		250		265		280		298	
Protor		H₅	H_6	H_5	H_6	H₅	H_6	H₅	H_6	H₅	H_6	H₅
	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H_3
~	, H _i	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$
C/mM	∕H _{3′}	Ha	$H_{3'}$	H_a	$H_{3'}$	Ha	$H_{3'}$	Ha	$H_{3'}$	Ha	$H_{3'}$	Ha
	8.536	7.400*	8.554	7.401*	8.569	7.403*	8.588	7.403*	8.605	7.404*	8.619	7.404*
2	7.823	7.725	7.832	7.702	7.837	7.683*	7.838	7.672*	7.839	7.668*	7.837	7.676*
Z	8.578	7.670	8.541	7.669	8.516	7.668	8.498	7.664	8.489	7.660	8.484	7.651
	6.745	3.794	6.757	3.795	6.769	3.797	6.782	3.799	6.796	3.804	6.809	3.808
	8.483	7.311*	8.502	7.322*	8.521	7.334*	8.542*	7.340*	8.564	7.353*	8.579	7.359*
10	7.696*	7.748	7.729*		7.755	7.710	7.772	7.696	7.786	7.686	7.795	7.680
10	8.642	7.644	8.599	7.650	8.557	7.651	8.529	7.653	8.511	7.654	8.496	7.648
	6.667	3.769	6.694	3.775	6.716	3.779	6.738	3.783	6.758	3.790	6.775	3.795
	8.455	7.262*	8.470	7.277*	8.491	7.285*	8.511	7.298*	8.534*	7.316*	8.549	7.322*
20	7.633*	7.759	7.670	7.744	7.702*		7.723*		7.748	7.702	7.762	7.691
20	8.684	7.629	8.626	7.639	8.582	7.642	8.550	7.646	8.528	7.649	8.507	7.644
	6.626	3.756	6.656	3.761	6.685	3.767	6.708	3.772	6.732	3.780	6.751	3.785
	8.424	7.215	8.435	7.220*	8.453	7.237*	8.472	7.252*	8.494	7.265*	8.515*	7.280*
40	7.563	7.771	7.605*	7.759	7.643*	7.747	7.668	7.735	7.694*	7.721	7.719*	7.712
10	8.723	7.618	8.662	7.628	8.614	7.634	8.578	7.638	8.552	6.642	8.527	7.640
	6.584	3.741	6.616	3.745	6.646	3.752	6.672	3.757	6.697	3.765	6.720	3.771
	8.410	7.189	8.416	7.197*	8.431	7.207*	8.452	7.225*	8.473	7.241*	8.493	7.263*
60	7.532	7.776	7.573	7.766	7.603*	7.757	7.640*	7.744	7.666	7.437	7.695*	7.720
00	8.743	7.613	8.680	7.621	8.632	7.630	8.594	7.635	8.568	7.641	8.541	7.639
	6.564	3.733	6.595	3.737	6.626	3.743	6.653	3.748	6.679	3.756	6.703	3.763
	8.398	7.170	8.405	7.177	8.421	7.191	8.438	7.205*	8.457	7.218*	8.476	7.237*
80	7.512	7.778	7.549	7.773	7.603*	7.765	7.617*	7.754	7.648*	7.744	7.671	7.733
00	8.745	7.610	8.693	7.618	8.645	7.629	8.609	7.633	8.579	7.638	8.552	7.638
	6.552	3.725	6.580	3.730	6.612	3.736	6.638	3.741	6.665	3.749	6.688	3.756
	8.559	7.440	8.575	7.432	8.586	7.430	8.604	7.425	8.619	7.419	8.632	7.419
8	7.882		7.874		7.865		7.861		7.857	7.663	7.849	
UM	8.545	7.686		7.677	8.504	7.678	8.489	7.669	8.483		8.480	
	6.782		6.782	3.802	6.788	3.803	6.797	3.803	6.809	3.807	6.820	3.812
	8.303	7.017	8.282	6.994	8.277	7.000	8.283	7.018	8.280	6.983	8.308	7.042
δρ	7.311		7.334		7.343		7.389		7.416	7.868	7.433	
00	8.865	7.578		7.580	8.783	7.607	8.746	7.609	8.723		8.754	
	6.427		6.440	3.666	6.472	3.669	6.491	3.663	6.517	3.661	6.546	3.681
	28	30	21	21	16	18	14	16	11	10	11	8
Kn	34		24		16		14		11		8	
	32	53		25	13	48	10	24	7	7	11	
	34		22	15	18	12	14	9	12	1	3	8
KD	35.2 ± 9	9.0	21.3	± 3.5	20	0.1 ± 12.	5 14	.4 ± 4.9	ç	0.3 ± 2.2	8.	2 ± 2.9

Table SI3e. ¹H-NMR data (δ /ppm) for NN'-OCH₃ ligand in [Cu(NN'-OCH₃)(PPh₃)Br] complex at several temperatures and concentrations, δ calculated for monomer and dimer and self-association constants.

Figure SI10. a) Concentration effect on NN`-OCH₃ ligand protons chemical shifts of [Cu(NN'-OCH₃)(PPh₃)Br] complex at 220 K and **b**) at 265 K.

T/K	220	4	235		250		265		280		298	
Proto	H_6	H ₅	H ₆	H_5	H_6	H_5	H ₆	H_5	H ₆	H_5	H ₆	H ₅
	H ₄	H ₃	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H₃	H_4	H ₃
	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$
	∖ H ₃'	Ha	$H_{3'}$	H_a	$H_{3'}$	Ha	$H_{3'}$	H_a	$H_{3'}$	H_a	$H_{3'}$	Ha
	8.460	7.328*	8.479	7.325*	8.503*	7.328*	8.521	7.330*	8.544	7.331*	8.566	7.333*
2	7.782	7.639	7.788	7.618	7.791	7.604	7.794	7.593	7.794	7.595	7.793	7.603
2	8.571	7.705	8.534	7.699	8.509	7.698	8.493	7.693	8.487	7.688	8.483	7.680
	6.504	2.977	6.517	2.976	6.532	2.976	6.548	2.978	6.565	2.979	6.585	2.983
	8.412	7.244*	8.437	7.252*	8.462	7.269*	8.497	7.281*	8.507	7.288*	8.529	7.294*
10	7.663*		7.701	7.633	7.725	7.619	7.742	7.604	7.752	7.603	7.759	7.600
10	8.615	7.676	8.564	7.681	8.528	7.683	8.480	7.680	8.491	7.679	8.479	7.675
	6.439	2.958	6.469	2.960	6.494	2.963	6.515	2.965	6.535	2.968	6.556	2.971
	8.381	7.182	8.405	7.202	8.431	7.221*	8.456	7.238*	8.480	7.251*	8.503	7.263*
20	7.593*	7.667*	7.641*	7.656*	7.676*	7.627	7.702	7.615	7.720	7.612	7.732	7.606
20	8.644	7.655	8.584	7.665	8.541	7.669	8.512	7.671	8.497	7.673	8.482	7.669
	6.395	2.945	6.433	2.948	6.463	2.952	6.489	2.955	6.513	2.959	6.535	2.963
	8.358	7.141	8.379	7.162	8.405	7.183	8.429	7.203	8.454	7.219*	8.479*	7.232*
35	7.538	7.655*	7.590	7.662*	7.634*	7.652*	7.669*		7.687	7.620	7.705	7.612
00	8.667	7.643	8.602	7.653	8.553	7.660	8.520	7.662	8.503	7.666	8.484	7.663
	6.364	2.934	6.403	2.938	6.437	2.942	6.466	2.945	6.492	2.950	6.516	2.953
	8.346	7.120	8.366	7.140	8.390	7.161	8.417	7.182	8.440	7.201	8.464	7.214 <mark>*</mark>
45	7.512	7.653*	7.566	7.654*	7.607	7.628*	7.644*		7.669*	7.624	7.691	7.618
10	8.678	7.636	8.609	7.649	8.558	7.655	8.526	7.660	8.508	7.663	8.488	7.661
	6.348	2.929	6.388	2.931	6.421	2.934	6.454	2.940	6.479	2.944	6.505	2.948
	8.334	7.098	8.352	7.118	8.375	7.139	8.399	7.161	8.423	7.180	8.448	7.197
60	7.484	7.652*	7.541	7.644*	7.583	7.642*	7.628*		7.651*		7.675*	7.625
00	8.686	7.633	8.618	7.643	8.566	7.650	8.530	7.656	8.513	7.660	8.493	7.658*
	6.332	2.921	6.372	2.925	6.407	2.928	6.438	2.932	6.466	2.937	6.493	2.942
	8.484	7.372	8.498	7.357	8.519	7.352	8.534	7.350	8.556	7.346	8.579	7.347
δΜ	7.845		7.828		7.815		7.814		7.808		7.805	
OM	8.548	7.724	8.521	7.708	8.502	7.705		7.699		7.691		7.682
	6.537	2.985	6.538	2.982	6.547	2.980	6.560	2.982	6.575	2.982	6.596	2.987
	8.219	6.881	8.203	6.892	8.205	6.887	8.146	6.910	8.235	6.927	8.277	6.967
δη	7.333		1.277		7.292		7.393		7.409		1.477	
	8.793	1.5/5	8.708	7.580	8.637	7.592		7.616		7.620		7.612
	6.174	2.858	6.201	2.854	6.230	2.832	6.278	2.851	6.312	2.845	6.366	2.868
	25	24	16	18	13	13	7	10	10	9	11	9
Kn	29		19		12		12		9		9	
T CD	26	25	16	18	14	16		19		12		7
	25	16	16	12	12	7	11	8	10	6	12	8
KD	24.3 ±	4.0	16.4 ± 2	.3 ´	12.4 ± 2.	.8	11.2 ± 4.	.3 9	9.3 ± 2.0) (9.3 ± 1.9)

Table SI3f. ¹H-NMR data (δ /ppm) for NN'-N(CH₃)₂ ligand in [Cu(NN'-N(CH₃)₂)(PPh₃)Br] complex at several temperatures and concentrations, δ calculated for monomer and dimer and self-association constants.

Figure SI11). ¹H-NMR spectra of [Cu(NN'-N(CH₃)₂)(PPh₃)Br] at 220K at several concentrations used for calculating self-association constants. Proton assignments are included. Similar behavior is observed at all temperatures used in this study.

Figure SI11. **a)** Concentration effect on NN^{$-N(CH_3)_2$} ligand protons chemical shifts of [Cu(NN^{$-N(CH_3)_2$}(PPh₃)Br] complex at 220 K, and **b)** at 250 K.

T/K	220		235		250		265		280		298	
Proton	H_6	H ₅	H ₆	H_5	H_6	H_5	H ₆	H_5	H ₆	H_5	H ₆	H_5
	H_4	H₃	H_4	H_3	H_4	H_3	H_4	H₃	H_4	H ₃	H_4	H_3
	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$	Hi	$H_{2'}$
C/mM `	∖H ₃'		$H_{3'}$		$H_{3'}$		$H_{3'}$		$H_{3'}$		$H_{3'}$	
	8.595*	7.466	8.612	7.465	8.629	7.464	8.644	7.466	8.655	7.464	8.673	7.468
2	7.845	7.780	7.858	7.762	7.868	7.748	7.874	7.737	7.876	7.736	7.878	7.745
2	8.597	7.547	8.555	7.543	8.525	7.543	8.503	7.542	8.488	7.536	8.483	7.521
	7.171		7.188		7.204*		7.219*		7.234*		7.245*	
	8.503	7.337*	8.518	7.340*	8.536	7.353*	8.554	7.365*	8.572	7.763*	8.590	7.381*
20	7.638	7.795	7.675	7.791	7.710	7.786	7.737	7.778	7.765*	7.763*	7.786	
20	8.767	7.510	8.708	7.521	8.662	7.531	8.622	7.535	8.587	7.537	8.559	7.532
	7.030		7.064		7.096		7.123		7.147		7.175	
	8.478	7.301*	8.486	7.301*	8.501	7.311*	8.518	7.322*	8.534	7.330*	8.554	7.343*
40	7.578	7.800	7.614	7.800	7.650	7.799	7.681	7.794	7.707	7.788	7.734	7.781
10	8.821	7.503	8.761	7.515	8.714	7.526	8.671	7.533	8.637	7.538	8.602	7.536
	6.991		7.023		7.055		7.083		7.110		7.138	
	8.464	7.277*	8.469	7.278*	8.481	7.282*	8.495	7.293*	8.510	7.300*	8.529	7.311*
60	7.546	7.802	7.582	7.806	7.616	7.808	7.647	7.802	7.674	7.797	7.705	7.793
	8.848	7.500	8.791	7.513	8.744	7.524	8.701	7.532	8.665	7.536	8.630	7.537
	6.970		7.000		7.031		7.059		7.085		7.116	
	8.460	7.270*	8.463	7.269*	8.472	7.272*	8.486	7.281*	8.502	7.292*	8.517	7.304*
80	7.536*	7.804	1.5/1	7.807	7.603	7.811	7.633	7.806	7.662	7.803	7.691	7.796
	8.857	7.499	8.802	7.513	8.756	7.524	8.715	7.532	8.679	7.538	8.642	7.537
	6.963	7 0 0 0 1	<u>6.993</u>	7 007	7.022	7 0051	7.049	7 0754	7.077	7 00 1 1	7.105	7 0001
	8.461	7.269*	8.462	7.267*	8.463	7.265*	8.479	1.275*	8.493	7.281*	8.510	7.293*
100	7.534*	7.805	7.565	7.807	7.591	7.812	7.622	7.810	7.650	7.805	7.683	7.800
	8.862	7.499	8.808	7.512	8.764	7.522	8.725	7.532	8.688	7.538	8.649	7.539
	6.962	7 500	6.990	7 5 4 4	7.014	7 405	7.042	7 400	7.069	7 405	7.100	7 400
	8.646 7.047	1.522	8.048 7.021	7.514	0.000 7.010	7.495	8.008 7.011	7.490	8.0/5 7.002	7.485	8.69Z	7.488
δ_{M}	1.941		1.931		1.910	1.130	1.911	1.124	7.90Z		1.090	
	0.022		0.001		0.40Z		0.471		0.400 7.056		0.400	
	0 402	7 1 7 1	0 270	7 160	0 260	7 1 2 2	0.244	7 1 2 2	0.265	7 1 2 2	0 277	7 1 / 0
	7 300	1.171	0.379	1.102	7 128	7 852	7 450	7 851	7 158	1.155	7 103	7.140
δ_{D}	8 000		8 950		2 010	7.052	8 878	7.001	8 858		8 827	
	6 862		6 88/		6 0.010		6 016		6 9/8		6 958	
	87	60	17	10	32	27	25	20	10	18	18	17
	72		50	43	33	32	25	20	13		14	····
ΚD	60		41		32		24		17		12	
	68		48		32		33		22		14	
Kd	69.4	± 11.1	47.0 ±	3.5	31.3 ±	2.2	25.4 ±	4.7	18.6 ±	2.1	15.0 ±	2.4

Table SI3g. ¹H-NMR data (δ /ppm) for NN'-Cl ligand in [Cu(NN'-Cl)(PPh₃)Br] complex at several temperatures and concentrations, δ calculated for monomer and dimer and self-association constants.

* Assigned by COSY. The association constants calculated do not include the data obtained at the concentration of 100 mM.

Figure SI12a.¹H-NMR spectra of [Cu(NN'-Cl)(PPh₃)Br] at 220K at several concentration used for calculating selfassociation constants. Proton assignments are included. Similar behavior is observed at all temperatures used in this study.

Figure 7 b) Concentration effect on NN^{-Cl} ligand protons chemical shifts of $[Cu(NN'-Cl)(PPh_3)Br]$ complex at 220 K.

Figure SI12 c). Concentration effect on NN^{-CI} ligand protons chemical shifts of $[Cu(NN'-Cl(PPh_3)Br]$ complex at 250 K.

The next figures SI13, are examples of COSY and NOESY spectra for [Cu(NN'-R)(PPh₃)Br] complexes.

Figure SI13 a. NOESY spectrum for [Cu(NN'-COCH₃)(PPh₃)Br], 20 mM solution at 298 K.

Figure SI13 b. NOESY spectrum for [Cu(NN'-H)(PPh₃)Br], 50 mM solution at 298 K.

Figure SI13 c. COSY spectrum for [Cu(NN'-H)(PPh₃)Br], 50 mM solution at 235 K.

Figure SI13 d. NOESY spectrum for [Cu(NN'-H)(PPh₃)Br], 20 mM solution at 265 K

Figure SI13 e. COSY spectrum for [Cu(NN'-OCH₃)(PPh₃)Br], 80 mM solution at 250 K

Figure SI13 f. COSY spectrum for $[Cu(NN'-N(CH_3)_2(PPh_3)Br]$, 60 mM solution at 280 K

Figure SI13 g. NOESY spectrum for Cu(NN'-N(CH₃)₂(PPh₃)Br], 45 mM solution at 298 K

IV- Electrochemical Results.

1.-Instrumental

All measurements were carried out under a nitrogen atmosphere at room temperature with tetrabutylammonium perchlorate (TBAP) 0.1 M as supporting electrolyte, Pt disc as working electrode (CH Instruments, USA), Pt wire as counter electrode, and Ag/AgCl(sat) as reference electrode, in a tree compartment cell using workstation Potentiostat 620E CH Instruments, iR compensation, USA. The cyclic voltammetry (CV) measurements were performed at different scan rates (10, 25, 50, 100, and 200 mV/s); Square wave voltammetry (SWV) was carried out using a frequency of 15 Hz, increasing potential of 4 mV, amplitude potential of 25 mV. Cu(I) complexes were dissolved at different concentrations (1.00, 0.75, 0.50, 0.25, and 0.10 mM of monomer) in freshly distilled CH_2CI_2 with P_2O_5 (Supelco) and stored in a Shott flask with molecular sieve activated at 573 K. All potentials values were reported as E vs internal reference Fc/Fc⁺.

2.- Previous NMR measurements.

Figure SI13 h. ¹H-NMR spectra of [Cu(NN'-OCH₃)(PPh₃)Br] in CD₂Cl₂ at several concentrations. The working temperature was 298 K. Proton assignments are included.

Figure SI13 I. ¹H-NMR spectra of $[Cu(NN'-OCH_3)(PPh_3)Br]]$ complex at 298K in CDCl₃ and CD₂Cl₂ for 2 and 80 mM concentrations. Proton assignments are included.

Figure SI13 j ¹H-NMR spectra of [Cu(NN'-H)(PPh₃)Br] of 5mM concentration in CDCl₃ at 300K, in the presence of increasing amounts of tetrabutylammonium perchlorate (TBAP). Proton assignments are included.

Figure SI13k. ¹H-NMR spectra of [Cu(NN'-OCH₃)(PPh₃)Br] of 5mM concentration in CD₂Cl₂ at 298 K, in the presence of increasing amounts of tetrabutylammonium perchlorate (TBAP). Proton assignments are included.

3.- Electrochemical

Figure SI14. Voltammetric profile of the different complexes at different scan rates at a concentration of $1 \text{ mM CH}_2\text{Cl}_2$ and 0.1 M [NBu_4]ClO₄.

Figure SI15. Cyclic Voltammetry (red) and Square Wave Voltammetry (black) of complexes at 1 mM in CH_2Cl_2 , scan rate 50 mV/s to CV and 15 Hz to SWV.

Figure SI16: Ip vs (scan rate) $^{1/2}$ from Cyclic voltammetry.

Figure SI17: SWV at different monomer concentrations in CH₂Cl₂, 15 Hz, 4 mV increasing potential.

Figure SI18: Change in anodic peak current Ip (monomer (M) and dimer (D)) vs initial monomer concentration from SWV.

Figure SI19: SWV corrected by absolute area at different concentrations of monomer.

Figure SI20: Pt electrode blank, obtained under N₂, 0.1 M [NBu₄]ClO₄ in CH₂Cl₂ at 100 mV/s and 293 K.

The voltammetric profiles of the blanks indeed showed an oxidation process associated to residual water present in CH_2Cl_2 (approximately at 1.3 V (vs Ag/AgCl_{sat})) under the experimental measurement conditions.

Figure SI21: Cyclic Voltammetry of isolated monomer couple (red), and monomer and dimmer (black), 5mM of $[Cu(N,N'-H)(PPh_3)Br]$ in CH₂Cl₂, 0.1 M of $[NBu_4]ClO_4$, Scan rate: 0.1 V/s.

For the $[Cu(N,N'-H)(PPh_3)Br]$ complex, a study was carried out by varying the potential window in order to isolate the coupling associated with the monomer. The results showed an undefined oxidation peak (shoulder 0.156 V) and a broad reduction peak (-0.051 V) (figure 1 red), with a ΔE peak of approximately 0.104 V, associated with an electrochemically irreversible process. The same figure shows (black) the complete profile with both oxidation processes coupled, evidencing the remarkable current increase in the reduction peak.

Figure SI22: Cyclic Voltammetry of 5mM solution of $[Cu(N,N'-H)(PPh_3)Br]$ in CH_2Cl_2 , 0.1 M of $[NBu_4]ClO_4$, Scan rate: 0.1 V/s with different potential windows.

In order to demonstrate that oxidation processes are associated with monomer/dimer equilibrium, variable potential window sweeps were performed (figure SI22), showing a remarkable decrease in the reduction peak current intensity as the potential window decreases. This decreasing dependence as the potential window decreases demonstrates a direct relationship between both oxidized species in dynamic equilibrium.