Supporting Information

Mechanical and thermal properties of carbon nanotubes in carbon nanotube fibers under tension-torsion loading

Mowen Niu^{a,e}, Chongxiao Cui^{a,b}, Rui Tian^a, Yushun Zhao^{a,b,d,*}, Linlin Miao^{a,b}, Weizhe Hao^{a,b}, Jiaxuan Li^{a,b}, Chao Sui^{a,b,d,*}, Xiaodong He^{b,c,d}, Chao Wang ^{a,b,d,*}

^aSchool of Astronautics, Harbin Institute of Technology, Harbin 150080, China ^bCenter for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China

^cShenzhen STRONG Advanced Materials Research Institute Co., Ltd, Shenzhen 518000, China

^dNational Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China ^eBeijing Institute of Astronautical Systems Engineering, Beijing 100076, China

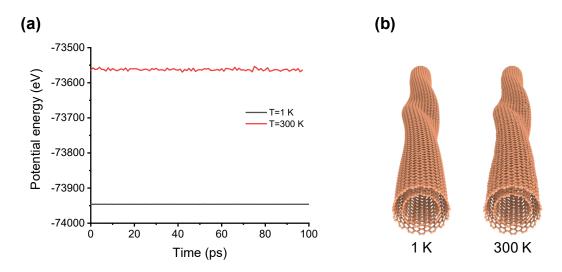
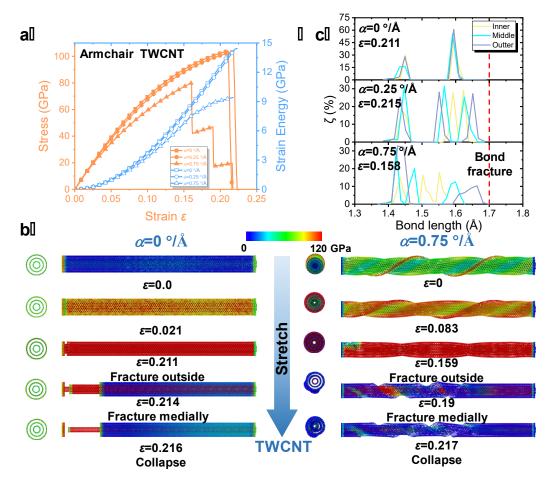



Figure S1 (a) Potential energy of representative DWCNT with α =0.25 °/Å during relaxation process; (b) Snapshots of fully relaxed DWCNT under temperature 1 K and 300 K.

Figure S2. (a) Stress and strain energy versus strain curves of TWCNT; (b) Snapshot of tensile process of TWCNT under α =0 °/Å and α =0.75 °/Å, atoms are colored by von mises stress; (c) The corresponding diagram of different bond length distribution of TWCNT in (a).