Solvent Effects on the Motion of a Crown Ether/Amino Rotaxane

Zhen Wu, ${ }^{\text {a }}$ Shuangshuang Wang,*b Zilin Zhang, ${ }^{\text {b }}$ Yanjun Zhang, ${ }^{\text {b }}$ Yanzhen Yin,*b Haixin Shi ${ }^{\text {b }}$ and Shufei Jiao ${ }^{\text {b }}$

a School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
b Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China

* Corresponding authors. Email address: doublewang123@163.com; yinyanzhen2009@163.com

Table S1. Detail of the molecular assemblies examined in this study.

Solvent	Number of atoms	Number of solvent molecules	Size of the simulation box $\left(\AA^{3}\right)$	Simulation time $(\boldsymbol{\mu s})$
CHCl_{3}	11160	2194	$65 \times 50 \times 76$	2.7
water	25906	8572	$66 \times 49 \times 75$	2.8

The force-field parameters of the axle and the C[8] came from the widely used CHARMM general force field (CGenFF), which included bonded, non-bonded, atomic charges, and VDW parameters. The molecule topologies were generated from the online CGenFF program (https://cgenff.umaryland.edu). ${ }^{1,2}$ The detailed parameters are shown in the following tables.

The axle

Table S2. The charge distributions of the axle.

ATOM	CHARGE	ATOM	CHARGE
C1	-0.269	H5	0.090
C2	0	H6	0.090
C3	-0.117	H7	0.090
C4	0	H8	0.115
C5	-0.269	H9	0.115
C6	-0.116	H10	0.090
C7	0.093	H11	0.090
C8	-0.116	H12	0.330
C9	0.127	H13	0.330
N1	-0.456	H14	0.090
C10	0.127	H15	0.090
C11	0.091	H16	0.115
$\mathrm{O} 12$	-0.108	H17	0.115
C13	-0.117	H18	0.115
C14	-0.006	H19	0.115
C15	-0.117	H20	0.090
C16	-0.108	H21	0.090
C17	0.064	H22	0.090
O1	-0.477	H23	0.090
C18	0.902	H24	0.090
O2	-0.632	H25	0.090
C19	-0.224	H26	0.090
C20	0.016	H27	0.090
C21	-0.275	H28	0.090
C22	-0.275	H29	0.090
C23	-0.224	H30	0.090
C24	0.902	H31	0.090
O3	-0.632	H32	0.090
O4	-0.489	H33	0.090
C25	0.081	H34	0.090
C26	-0.180	H35	0.090
C27	-0.182	H36	0.090
C28	0.010	H37	0.090
O5	-0.338	H38	0.090
C29	-0.010	H39	0.090
C30	-0.182	H40	0.090
C31	-0.180	H41	0.090
C32	0.059	H42	0.090

ATOM	CHARGE	ATOM	CHARGE
O6	-0.305	H 43	0.090
O7	-0.493	H 44	0.090
C33	0.471	H 45	0.090
C34	0.083	H 46	0.090
C35	-0.112	H 47	0.090
C36	-0.115	H 48	0.115
C37	0.091	H 49	0.115
C38	-0.115	H 50	0.115
C39	-0.112	H 51	0.115
C40	0.127	H 52	0.090
N2	-0.456	H 54	0.090
C41	0.127	H 55	0.330
C42	0.093	H 57	0.330
C43	-0.116	H 58	0.090
C44	0	H 59	0.090
C45	-0.269	H 60	0.115
C46	-0.117	H 61	0.090
C47	0	H 62	0.090
C48	-0.116	-0.269	0.090
C49	0.090	0.090	
H1	0.115	0.115	0.115
H2		0.090	

The C[8]

Table S3. The charge distributions of the C[8].

ATOM	CHARGE	ATOM	CHARGE
C1	-0.114	H 1	0.115
C1	-0.114	H 2	0.115
C2	-0.114	H 3	0.115
C3	0.219	H 4	0.090
C4	-0.390	H 5	0.090
O1	-0.011	H 6	0.090
C5	-0.011	H 7	0.090
C6	-0.011	H 8	0.090
C7	-0.338	H 9	0.090
O2 8	-0.011	H 11	0.090
O3 812	0.090		
C9	-0.338	H 13	0.090
C10	-0.011	H 14	0.090
O4	-0.011	H 15	0.090
C11	-0.390	H 16	0.090
C12	0.219	H 17	0.115
C13	-0.014	H 18	0.115
C14	-0.114	H19	0.115
C15	-0.114	-0.114	-0.114

ATOM	CHARGE	ATOM	CHARGE
C16	0.219	H 21	0.090
O5	-0.390	H 22	0.090
C17	-0.011	H 23	0.090
C18	-0.011	H 24	0.090
O6	-0.338	H 25	0.090
C19	-0.011	H 26	0.090
C20	-0.011	H 27	0.090
O7	-0.338	H 28	0.090
C21	-0.011	H 29	0.090
C22	-0.011	H 30	0.090
O8	-0.390	H 31	0.090
C23	0.219	H 32	0.115
C24	-0.114		

Simulation details

1. Molecular Dynamics Simulations

NAMD ${ }^{3}$ with the CHARMM 36 general force field (CGenFF) ${ }^{2}$ were used for performing all the atomistic MDS. The rigid model of Dietz and Heinzinger (DH model), ${ }^{4}$ which was merged into the CgenFF, was used to express CHCl_{3}. The TIP3P water model ${ }^{5}$ were employed for representing water. The details of the charge distributions of the axle and the C[8] were demonstrated in Table S2 and S3. Covalent bonds involving hydrogen atoms were restrained to their equilibrium lengths by applying the SHAKE/RATTLE ${ }^{6,7}$ and SETTLE algorithms. ${ }^{8}$ The temperature was controlled at 198 K by using the Langevin dynamics ${ }^{9}$ and the pressure was kept at 1 atm by adopting the Langevin piston method. ${ }^{9}$ The r-RESPA multiple time step algorithm ${ }^{10}$ was utilized to integrate the equations of motion with a time step of 4 and 2 fs for long- and short-range interactions, respectively. Long-range electrostatic forces were evaluated by use of the particle-mesh Ewald method, ${ }^{11}$ and short-range van der Waals and electrostatic interactions were cut off by means of a smoothed $12.0 \AA$ spherical bound. Visualization and analysis of the molecular dynamics trajectories were performed with the VMD program. ${ }^{12}$

2. Free-energy calculations

All the free-energy calculations were performed using the Colvars ${ }^{13}$ module in NAMD. Well-tempered meta-eABF (WTM-eABF) ${ }^{14,15}$ was employed to enhance sampling along the transition coordinate. The corrected z-averaged restraint (CZAR) estimator ${ }^{16}$ was used to calculate the unbiased free energy landscapes and the MULE algorithm ${ }^{17}$ was adopted to identify the lowest free-energy pathways. The variation of the free energy, $\Delta G(\xi, d)$, was determined by integrating the average force acting concomitantly on ξ and d. To avoid spurious folding of the axle, the backbone of the rotaxane was softly restrained to its extended conformation during the MDS. A soft harmonic potential was also used to prevent the chloride ions from approaching the rotaxane. Before implement the free-energy calculation, a 20 ns equilibrium MDS were performed for each solvated system. The total simulation time amounted to 2.7 and 2.8μ for the rotaxane, respectively, in CHCl_{3} and water.

References

1 R. J. Ferreira, P. M. Kasson, ACS. Infect. Dis. 2019, 5, 2096-2104.
2 K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov and A. D. Mackerell, J. Comput. Chem., 2010, 31, 671-690.
3 J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy , Y. Wang, B. Roux , A.

Aksimentiev , Z. Luthey-Schulten , L. V. Kalé, K. Schulten , C. Chipot and E. Tajkhorshid, J. Chem. Phys., 2020, 153, 44130.
4 W. Dietz, K. Heinzinger, Ber. Bunsenges. Phys. Chem. 1985, 89, 968-977.
5 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79, 926-935.
6 H. C. Andersen, J. Comput. Phys. 1983, 52, 24-34.
7 J. P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, J. Comput. Phys., 1977, 23, 327-341.
8 S. Miyamoto, P. A. Kollman, J. Comput. Chem. 1992, 13, 952-962.
9 S. E. Feller, Y. Zhang, R. W. Pastor and B. R. Brooks, J. Chem. Phys., 1995, 103, 4613-4621.
10 M. Tuckerman, B. J. Berne and G. J. Martyna, J. Chem. Phys., 1992, 97, 1990-2001.
11 T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993, 98, 10089-10092.
2 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. 1996, 14, 33-38.
G. Fiorin, M. L. Klein and J. Hénin, Mol. Phys., 2013, 111, 3345-3362.
H. H. Fu, X. G. Shao, W. S. Cai and C. Chipot, Acc. Chem. Res., 2019, 52, 3254-3264.
H. H. Fu, H. Zhang, H. C. Chen, X. G. Shao, C. Chipot and W. S. Cai, J. Phys. Chem. Lett., 2018, 9, 4738-4745.
A. Lesage, T. Lelièvre, G. Stoltz and J. Hénin, J. Phys. Chem. B, 2017, 121, 3676-3685.

17 H. H. Fu, H. C. Chen, X. A. Wang, H. Chai, X. G. Shao, W. S. Cai and C. Chipot, J. Chem. Inf. Model., 2020, 60, 5366-5374.

