Solvent Effects on the Motion of a Crown Ether/Amino Rotaxane

Zhen Wu,^a Shuangshuang Wang,^{*b} Zilin Zhang,^b Yanjun Zhang,^b Yanzhen Yin,^{*b} Haixin Shi^b and Shufei Jiao^b

- ^a School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- ^b Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
- * Corresponding authors. Email address: doublewang123@163.com; yinyanzhen2009@163.com

Table S1. Detail of the molecular assemblies examined in this study.

Solvent	Number of atoms	Number of solvent molecules	Size of the simulation box (Å ³)	Simulation time (µs)
CHCl ₃	11160	2194	65×50×76	2.7
water	25906	8572	66×49×75	2.8

The force-field parameters of the axle and the C[8] came from the widely used CHARMM general force field (CGenFF), which included bonded, non-bonded, atomic charges, and VDW parameters. The molecule topologies were generated from the online CGenFF program (<u>https://cgenff.umaryland.edu</u>).^{1,2} The detailed parameters are shown in the following tables.

The axle

ATOM CHARGE ATOM CHARGE C1 Н5 0.090 -0.269 C2 0 H6 0.090 C3 -0.117 0.090 Η7 C4 0 H8 0.115 С5 -0.269 H9 0.115 C6 -0.116 0.090 H10 C7 0.093 H11 0.090 C8 -0.116 H12 0.330 C9 0.127 H13 0.330 N1 -0.456 H14 0.090 C10 0.127 H15 0.090 C11 0.091 H16 0.115 012 -0.108 H17 0.115 C13 -0.117 H18 0.115 C14 -0.006 H19 0.115 C15 -0.117 H20 0.090 C16 -0.108 0.090 H21 C17 0.064 H22 0.090 01 -0.477 H23 0.090 C18 0.902 H24 0.090 O2 -0.632 H25 0.090 C19 -0.224 H26 0.090 C20 0.016 0.090 H27 C21 -0.275 H28 0.090 C22 -0.275 H29 0.090 C23 -0.224 H30 0.090 C24 0.902 H31 0.090 O3 -0.632 0.090 H32 04 -0.489 H33 0.090 C25 0.081 H34 0.090 C26 -0.180 H35 0.090 C27 -0.182 H36 0.090 C28 0.010 H37 0.090 05 -0.338 H38 0.090 0.090 C29 -0.010 H39 C30 -0.182 H40 0.090 C31 -0.180 H41 0.090 0.059 0.090 C32 H42

Table S2. The charge distributions of the axle.

АТОМ	CHARGE	АТОМ	CHARGE
O6	-0.305	H43	0.090
07	-0.493	H44	0.090
C33	0.471	H45	0.090
C34	0.083	H46	0.090
C35	-0.112	H47	0.090
C36	-0.115	H48	0.115
C37	0.091	H49	0.115
C38	-0.115	H50	0.115
C39	-0.112	H51	0.115
C40	0.127	H52	0.090
N2	-0.456	H53	0.090
C41	0.127	H54	0.330
C42	0.093	H55	0.330
C43	-0.116	H56	0.090
C44	0	H57	0.090
C45	-0.269	H58	0.115
C46	-0.117	H59	0.090
C47	0	H60	0.090
C48	-0.116	H61	0.090
C49	-0.269	H62	0.115
H1	0.090	H63	0.115
H2	0.090	H64	0.090
Н3	0.090	H65	0.090
H4	0.115	H66	0.090

The C[8]

Table S3. The charge distributions of the C	7	8
--	---	---

ATOM	CHARGE	АТОМ	CHARGE
C1	-0.114	H1	0.115
C1	-0.114	H2	0.115
C2	-0.114	H3	0.115
C3	0.219	H4	0.090
C4	-0.390	H5	0.090
01	-0.011	Н6	0.090
C5	-0.011	H7	0.090
C6	-0.011	H8	0.090
C7	-0.338	Н9	0.090
O2	-0.011	H10	0.090
C8	-0.338	H11	0.090
O3	-0.011	H12	0.090
С9	-0.011	H13	0.090
C10	-0.390	H14	0.090
O4	0.219	H15	0.090
C11	-0.014	H16	0.115
C12	-0.114	H17	0.115
C13	-0.114	H18	0.115
C14	-0.114	H19	0.115
C15	-0.114	H20	0.090

АТОМ	CHARGE	АТОМ	CHARGE
C16	0.219	H21	0.090
O5	-0.390	H22	0.090
C17	-0.011	H23	0.090
C18	-0.011	H24	0.090
O6	-0.338	H25	0.090
C19	-0.011	H26	0.090
C20	-0.011	H27	0.090
O7	-0.338	H28	0.090
C21	-0.011	H29	0.090
C22	-0.011	H30	0.090
08	-0.390	H31	0.090
C23	0.219	H32	0.115
C24	-0.114		

Simulation details

1. Molecular Dynamics Simulations

NAMD³ with the CHARMM 36 general force field (CGenFF)² were used for performing all the atomistic MDS. The rigid model of Dietz and Heinzinger (DH model),⁴ which was merged into the CgenFF, was used to express CHCl₃. The TIP3P water model⁵ were employed for representing water. The details of the charge distributions of the axle and the C[8] were demonstrated in Table S2 and S3. Covalent bonds involving hydrogen atoms were restrained to their equilibrium lengths by applying the SHAKE/RATTLE^{6,7} and SETTLE algorithms.⁸ The temperature was controlled at 198 K by using the Langevin dynamics⁹ and the pressure was kept at 1 atm by adopting the Langevin piston method.⁹ The r-RESPA multiple time step algorithm¹⁰ was utilized to integrate the equations of motion with a time step of 4 and 2 fs for long- and short-range interactions, respectively. Long-range electrostatic forces were evaluated by use of the particle-mesh Ewald method,¹¹ and short-range van der Waals and electrostatic interactions were cut off by means of a smoothed 12.0 Å spherical bound. Visualization and analysis of the molecular dynamics trajectories were performed with the VMD program.¹²

2. Free-energy calculations

All the free-energy calculations were performed using the Colvars¹³ module in NAMD. Well-tempered meta-eABF (WTM-eABF)^{14,15} was employed to enhance sampling along the transition coordinate. The corrected *z*-averaged restraint (CZAR) estimator¹⁶ was used to calculate the unbiased free energy landscapes and the MULE algorithm¹⁷ was adopted to identify the lowest free-energy pathways. The variation of the free energy, $\Delta G(\xi, d)$, was determined by integrating the average force acting concomitantly on ξ and d. To avoid spurious folding of the axle, the backbone of the rotaxane was softly restrained to its extended conformation during the MDS. A soft harmonic potential was also used to prevent the chloride ions from approaching the rotaxane. Before implement the free-energy calculation, a 20 ns equilibrium MDS were performed for each solvated system. The total simulation time amounted to 2.7 and 2.8 μ s for the rotaxane, respectively, in CHCl₃ and water.

References

- 1 R. J. Ferreira, P. M. Kasson, ACS. Infect. Dis. 2019, 5, 2096–2104.
- 2 K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov and A. D. Mackerell, *J. Comput. Chem.*, 2010, **31**, 671-690.
- 3 J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A.

Aksimentiev, Z. Luthey-Schulten, L. V. Kalé, K. Schulten, C. Chipot and E. Tajkhorshid, J. Chem. Phys., 2020, 153, 44130.

- 4 W. Dietz, K. Heinzinger, Ber. Bunsenges. Phys. Chem. 1985, 89, 968–977.
- 5 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79, 926–935.
- 6 H. C. Andersen, J. Comput. Phys. 1983, 52, 24–34.
- 7 J. P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, J. Comput. Phys., 1977, 23, 327-341.
- 8 S. Miyamoto, P. A. Kollman, J. Comput. Chem. 1992, 13, 952–962.
- 9 S. E. Feller, Y. Zhang, R. W. Pastor and B. R. Brooks, J. Chem. Phys., 1995, 103, 4613–4621.
- 10 M. Tuckerman, B. J. Berne and G. J. Martyna, J. Chem. Phys., 1992, 97, 1990–2001.
- 11 T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993, 98, 10089–10092.
- 12 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. 1996, 14, 33-38.
- 13 G. Fiorin, M. L. Klein and J. Hénin, Mol. Phys., 2013, 111, 3345-3362.
- 14 H. H. Fu, X. G. Shao, W. S. Cai and C. Chipot, Acc. Chem. Res., 2019, 52, 3254–3264.
- 15 H. H. Fu, H. Zhang, H. C. Chen, X. G. Shao, C. Chipot and W. S. Cai, J. Phys. Chem. Lett., 2018, 9, 4738–4745.
- 16 A. Lesage, T. Lelièvre, G. Stoltz and J. Hénin, J. Phys. Chem. B, 2017, 121, 3676–3685.
- 17 H. H. Fu, H. C. Chen, X. A. Wang, H. Chai, X. G. Shao, W. S. Cai and C. Chipot, *J. Chem. Inf. Model.*, 2020, **60**, 5366–5374.