Enhanced response of titanium doped iron(II) oxalate

under electric field

Chunde Li, ^a Hua Wei, ^{*a,b} Xueyan Hu, ^a Zhaoxian Chen, ^a Xin Xie, ^a Guo Chen, ^a Anping Liu, ^a Yingzhou Huang, ^a and Weijia Wen ^c

^a Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China. Email: huawei.hw@cqu.edu.cn ^b State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China.

^c Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Fig S1: The SEM morphology of the particle dried at temperatures, (a) 50 °C, (b) 60 °C, and (c) 80 °C, respectively.

Fig S2: The SEM observation of the chain-like structure in the ER fluids with 2 wt %, mixing the particles dried at temperatures, (a) 50 °C, (b) 60 °C, and (c) 70 °C, respectively, in the N-butyl alcohol, under 2 kV/mm.

Fig S3: The EDS spectra of the particles dried at temperatures, (**a**) 50 °C, (**b**) 60 °C, (**c**) 70 °C, and (**d**) 80 °C, respectively.

Fig S4: The optical image of the ER fluids with 5 wt %, consisting the particles dried at temperatures, (a)(b) 60 °C, (c)(d) 70 °C, and (e)(f) 80 °C, respectively, in silicone oil, under defecting the external electric field (a) (c) (e) and existing the field (b) (d) (f) with 2 kV/mm.

Fig S5: Dependences of the viscosity on the shear rate for the ER fluids with 20 wt %, mixing the different particles dried at temperatures, (a) 50 °C, (b) 60 °C, (c) 70°C, and (d) 80 °C, respectively, in silicone oil, under the various electric fields (0 - 3 kV/mm).