Supporting information

Highly effective removal of Hg(II) solution using corn bract@MoS₂

as a new biomass adsorbent

Xiaoxu Xu^{1#}, Qihui Guo^{2#}, Chengyue Yang², Zhuang Hu², Qifan Chen^{*1}, Jianshe Hu^{*2}

¹College of Chemical Engineering and Machinery, Eastern Liaoning University,

Dandong, 118001, P. R. China

²Center for Molecular Science and Engineering, College of Science, Northeastern

University, Shenyang, 110819, P. R. China.

Corresponding author: E-mail for J.S. Hu: hujs@mail.neu.edu.cn_and Q.F. Chen:

qifan_C405@163.com

[#]These authors contributed equally to this work.

Materials and instruments

CB come from farmers' markets; Ammonium molybdate tetrahydrate solution (AR 20%) and thiourea were purchased from Tianjin Daomao Chemical Reagent Company (Tianjin, China); Mercurium nitrate was supplied by Guizhou Tongren Tailuier Chemical Plant (Guizhou, China). FT-IR spectrum was recorded on the PerkinElmer spectrum One (B) spectrometer using KBr particles in the range of 4000-500 cm-1. Using the Bruker D8 device, X-ray powder diffraction (XRD) spectrum of the Cu-K α radiation (λ =1.54a) sample under 40kv and 40ma was obtained in the range of 1~10°(2 θ). The morphology of the sample was observed with a scanning electron microscope (SEM, JEOL-6500F). Using Netzsch 209C under N2 flow conditions, the heating rate is 20 °C min-1 to perform thermogravimetric analysis (TGA) on the stability of the sample. X-ray photoelectron spectroscopy (XPS) used ESCALAB250 to detect the surface composition of the sample.

Figure S1 TEM images of CB@MoS₂ (a,b)

Models	Parameters	value	
	$Q_{ m m,cal}~(m mg/g)$	990.10	
Langmuir	$K_{\rm L}$ (min ⁻¹)	0.2583	
	R^2	0.9992	
Freundlich	$\ln K_{ m F}$	6.0181	
	п	5.4177	
	R^2	0.9088	

Table S1 Langmuir and Freundlich isotherm parameters

Models	Parameters	value
Pseudo-first-order equation	$Q_{\rm e, exp} (mg/g)$	332.50
	$Q_{\rm e, \ cal} \ ({\rm mg/g})$	295.75
	$k_1 ({\rm min}^{-1})$	0.0659
	R^2	0.8281
	$Q_{\rm e, \ cal} \ ({\rm mg/g})$	341.30
Pseudo-second-order	k_2 (g·mg ⁻¹ ·min ⁻¹)	0.0006
equation	R^2	0.9991
Intraparticle diffusion	$k_{p1} \ (\mathrm{mg \ g^{-1} \ min^{-0.5}})$	45.104
	C_{I}	80.156
	R_{I}^{2}	0.9762
	$K_{p2} (mg g^{-1} min^{-0.5})$	13.627
	C_2	200.34
	R^2_2	0.9630
	$K_{p3} (mg g^{-1} min^{-0.5})$	2.5264
	C_3	302.03
	R^2_3	0.5639

Table S2 Pseudo-first-order, pseudo-second-order and intraparticle diffusion model parameters

Table S3 Thermodynamic parameters at different temperatures

T(K)	298	308	318	328
$\Delta G(kJ/mol)$	-6.69	-10.00	-13.32	-16.64

notes: $\Delta H^0 = 92.108 \text{ kJ/mol}, \Delta S^0 = 331.534 \text{ J/mol}$

Figure S2 (a) FT-IR spectra of CB@MoS2 and CB@MoS2@HgS; (b) XRD patterns

of CB@MoS2 and CB@MoS2@HgS; (c) High-resolution XPS spectrum of Mo3d