Electronic Supplementary Information (ESI)

Naphthylisoindolinone Alkaloids: The First Ring-Contracted Naphthylisoquinolines, from the Tropical Liana *Ancistrocladus abbreviatus*, with Cytotoxic Activity

Shaimaa Fayez,^{a,b} Torsten Bruhn,^c Doris Feineis,^a Laurent Aké Assi,^{d,∥} Prem Prakash Kushwaha,^e Shashank Kumar,^e and Gerhard Bringmann^{a,*}

- ^a Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- ^b Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt
- ^c Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany
- ^d Centre National de Floristique, Conservatoire et Jardin Botaniques, Université d'Abidjan, Abidjan 08, Ivory Coast
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda-151401, Punjab, India
- Deceased on January 14, 2014.
- * Corresponding author. E-mail address: <u>bringman@chemie.uni-wuerzburg.de</u> (G. Bringmann)

Table of Contents

1. General Procedure for Oxidative Degradation ofP-4Naphthylisoindolinone Alkaloids on an Analytical ScaleP-4

2. Ancistrobrevoline A (14)

(S1)	¹ H NMR spectrum of ancistrobrevoline A (14) in methanol- d_4	P-6
(S2)	¹³ C NMR spectrum of ancistrobrevoline A (14) in methanol- d_4	P-7
(S3)	¹³ C DEPT 135 NMR spectrum of ancistrobrevoline A (14) in methanol- d_4	P-8
(S4)	¹ H- ¹ H COSY spectrum of ancistrobrevoline A (14) in methanol- d_4	P-9
(S5)	¹ H- ¹ H NOESY spectrum of ancistrobrevoline A (14) in methanol- d_4	P-10
(S6)	¹ H- ¹³ C HSQC spectrum of ancistrobrevoline A (14) in methanol- d_4	P-11
(S7)	¹ H- ¹³ C HMBC spectrum of ancistrobrevoline A (14) in methanol- d_4	P-12
(S8)	HR-ESI-MS spectrum of ancistrobrevoline A (14)	P-13
(S9)	IR spectrum of ancistrobrevoline A (14)	P-14
(S10)	ECD spectrum of ancistrobrevoline A (14)	P-15
(S11)	Oxidative degradation of ancistrobrevoline A (14)	P-16

3. Ancistrobrevoline B (15)

(S12)	¹ H NMR spectrum of ancistrobrevoline B (15) in methanol- d_4	P-17
(S13)	¹³ C NMR spectrum of ancistrobrevoline B (15) in methanol- d_4	P-18
(S14)	13 C DEPT 135 NMR spectrum of ancistrobrevoline B (15) in methanol- d_4	P-19
(S15)	¹ H- ¹ H COSY spectrum of ancistrobrevoline B (15) in methanol- d_4	P-20
(S16)	¹ H- ¹ H NOESY spectrum of ancistrobrevoline B (15) in methanol- d_4	P-21
(S17)	¹ H- ¹³ C HSQC spectrum of ancistrobrevoline B (15) in methanol- d_4	P-22
(S18)	¹ H- ¹³ C HMBC spectrum of ancistrobrevoline B (15) in methanol- d_4	P-23
(S19)	HR-ESI-MS spectrum of ancistrobrevoline B (15)	P-24
(S20)	IR spectrum of ancistrobrevoline B (15)	P-25
(S21)	ECD spectrum of ancistrobrevoline B (15)	P-26
(S22)	Oxidative degradation of ancistrobrevoline B (15)	P-27

4. Ancistrobrevoline C (16)

(S23)	¹ H NMR spectrum of ancistrobrevoline C (16) in methanol- d_4	P-28
(S24)	¹³ C NMR spectrum of ancistrobrevoline C (16) in methanol- d_4	P-29
(S25)	¹³ C DEPT 135 NMR spectrum of ancistrobrevoline C (16) in methanol- d_4	P-30
(S26)	¹ H- ¹ H COSY spectrum of ancistrobrevoline C (16) in methanol- d_4	P-31
(S27)	¹ H- ¹ H NOESY spectrum of ancistrobrevoline C (16) in methanol- d_4	P-32
(S28)	¹ H- ¹³ C HSQC spectrum of ancistrobrevoline C (16) in methanol- d_4	P-33
(S29)	¹ H- ¹³ C HMBC spectrum of ancistrobrevoline C (16) in methanol- d_4	P-34
(S30)	HR-ESI-MS spectrum of ancistrobrevoline C (16)	P-35
(S31)	IR spectrum of ancistrobrevoline C (16)	P-36
(S32)	ECD spectrum of ancistrobrevoline C (16)	P-37
(S33)	Oxidative degradation of ancistrobrevoline C (16)	P-38

5. Ancistrobrevoline D (17)

(S34)	¹ H NMR spectrum of ancistrobrevoline D (17) in methanol- d_4	P-39
(S35)	¹³ C NMR spectrum of ancistrobrevoline D (17) in methanol- d_4	P-40
(S36)	13 C DEPT 135 NMR spectrum of ancistrobrevoline D (17) in methanol- d_4	P-41
(S37)	¹ H- ¹ H COSY spectrum of ancistrobrevoline D (17) in methanol- d_4	P-42
(S38)	¹ H- ¹ H NOESY spectrum of ancistrobrevoline D (17) in methanol- d_4	P-43
(S39)	¹ H- ¹³ C HSQC spectrum of ancistrobrevoline D (17) in methanol- d_4	P-44
(S40)	¹ H- ¹³ C HMBC spectrum of ancistrobrevoline D (17) in methanol- d_4	P-45
(S41)	HR-ESI-MS spectrum of ancistrobrevoline D (17)	P-46
(S42)	IR spectrum of ancistrobrevoline D (17)	P-47
(S43)	ECD spectrum of ancistrobrevoline D (17)	P-48
(S44)	Oxidative degradation of ancistrobrevoline D (17)	P-49

1. General Procedure for Oxidative Degradation of Naphthylisoindolinone Alkaloids on an Analytical Scale

Scheme: Oxidative degradation of ancistrobrevoline B (16) to give readily analyzable *N*-methyl-Dalanine: (a) RuCl₃, NaIO₄; (b) SOCl₂, MeOH; (c) (*R*)-MTPA-Cl (Mosher's chloride); (d) stereoanalysis of the Mosher derivative of the methyl ester of *N*-methyl-D-alanine by GC-MSD.

The naphthylisoindolinone alkaloids ancistrobrevolines A-D (14-17) were subjected to a ruthenium(VIII)-mediated periodate degradation following a miniaturized procedure (see Scheme) as described earlier (G. Bringmann, R. God and M. Schäffer, *Phytochemistry*, 1996, **43**, 1393-1403). with subsequent derivatization of the resulting amino acid *N*-methylalanine with CH₃OH/HCl and (*R*)- α -trifluoromethylphenyl-acetylchloride [(*R*)-MTPA-Cl, prepared from (*S*)-MTPA]. The absolute configurations of **14-17** at the stereogenic center at C-1 were assigned by gas chromatography (GC) on a dimethylpolysiloxane-coated capillary column coupled to a mass-selective detector (MSD) and comparison with the corresponding derivatives of the authentic amino acids *N*-methyl-D-alanine and *N*-methyl-L-alanine.

Reactions were performed in 2.5 mL Wheaton screw-cap vials. The pure ancistrobrevolines (ca. 0.5 mg each) and 0.1 mg of RuCl₃·H₂O (as catalyst) were added with stirring to a two-phase mixture consisting of MeCN (100 μ L), CCl₄ (100 μ L), and 0.1 M sodium phosphate buffer (pH 6.0) (200 μ L) at room temperature. Over a period of 60 min, 26 mg of NaIO₄ were added in several portions and the mixture was allowed to stir at room temperature for another 1.5 h. For extraction of the resulting *N*-methylalanine, H₂O (700 μ L) were added and after a short period of additional stirring (10 min), the aqueous phase was separated, washed (× 2) with 300 μ L portions of CHCl₃ and then lyophilized. The residue was extracted with dry MeOH (1.5 mL) followed by separation of the insoluble inorganic salts by centrifugation, providing a methanolic solution of the resulting amino acids, which was submitted to esterification. For this purpose, freshly

distilled SOCl₂ (70 µL) was added dropwise at 0°C with vigorously stirring. The mixture was then allowed to stand at room temperature for 12 h and another portion of SOCl₂ (70 µL) was added in the same manner. After 6 h standing at room temperature and evaporation of the solvent, the residue was suspended in dry CH₂Cl₂ (500 µL), with subsequent addition of 0.2 M (*R*)-MTPA-Cl in CH₂Cl₂ (100 µL) and up to 20 µL of NEt₃ until the mixture became alkaline. After stirring for 30 min, 1 µL of the resulting mixture was used directly for GC-MSD analysis on a non-polar fused silica capillary column (HP Ultra 2, 25 m ×0.32 mm × 0.52 µm). Helium was used as carrier gas with a column head pressure of 40 kPa. For chromatographic separation, an on-column injector maintained at 210 °C was used, with the column temperature program 100° C–160°C (30°C/min), then 160° C–190°C (1°C/min) and finally increased to 270°C (40°C/min).

Comparison with the respective derivatives of authentic amino acids of known configuration (from a test racemate routinely used for the analysis of usual naphthylisoquinoline alkaloids consisting of *N*-methylalanine, 3-aminobutyric acid, and *N*-methyl-3-aminobutyric acid) finally provided direct information about the absolute configuration at the chiral center at C1 of ancistrobrevoline A (14) (see Figure S11), ancistrobrevoline B (15) (see Figure S22), ancistrobrevoline C (16) (see Figure S33), and ancistrobrevoline D (17) (see Figure S44).

Figure S1: ¹H NMR spectrum of ancistrobrevoline A (14) in methanol-*d*₄.

Figure S2: ¹³C NMR spectrum of ancistrobrevoline A (14) in methanol-*d*₄.

Figure S3: 13 C DEPT 135 NMR spectrum ancistrobrevoline A (14) in methanol- d_4 .

Figure S4: 1 H- 1 H COSY spectrum of ancistrobrevoline A (14) in methanol- d_{4} .

Figure S5: ¹H-¹H NOESY spectrum of ancistrobrevoline A (14) in methanol- d_4 .

(uudd) τμ

Figure S6: 1 H- 13 C HSQC spectrum of ancistrobrevoline (14) in methanol- d_4 .

Figure S7: ¹H-¹³C HMBC spectrum of ancistrobrevoline (14) in methanol- d_4 .

ž Ř 2017_3443_BRI_rAal26P30-4_3.d: +MS, 0.1min #3 +MS, 0.1min #3 0.3 Bar 200 °C 4.0 l/min Source 2250 450 2000 Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 449 1750 448 e⁻Conf N-Rule even ok Positive 100.0 Vpp 200.0 Vpp 200.0 Vpp 1500 447 1286.52644 rdb 12.5 446.17569 1250 Score 100.00 446 lon Polarity Set Funnel 1 RF Set Funnel 2 RF Set Hexapole RF mSigma # mSigma 445.17893 1000 445 865.35689 444.17711 750 Ion Formula m/z err [ppm] C25H27NNaO5 444.17814 2.33 444 ESI Not active 50 m/z 2500 m/z 20 444.17711 443 Acquisition Parameter 442.15527 250 442 Source Type Focus Scan Begin Scan End # -Meas. m/z 444.17711 10 x105 2.5 x105 2.0 0.5 15 2.0 15 1.0 0.5 0.0 0.0

Figure S8: HR-ESI-MS spectrum of ancistrobrevoline A (14).

-

10.7

Figure S9: IR spectrum of ancistrobrevoline A (14).

93.3576

13 672.071

Figure S10a: ECD spectrum of ancistrobrevoline A (14).

Figure S10b: Assignment of the absolute axial configuration of ancistrobrevoline A (14), by comparison of its experimental ECD spectrum with the spectra calculated for *P*-14 and *M*-14 by using TD ω B97XD3/def2-TZVP//B3LYP-D3/def2-TZVP.

Figure S11: Oxidative degradation of ancistrobrevoline A (14).

Figure S12: ¹H NMR spectrum of ancistrobrevoline B (15) in methanol- d_4 .

Figure S13: ¹³C NMR spectrum of ancistrobrevoline B (15) in methanol- d_4 .

Figure S14: ¹³C DEPT 135 NMR spectrum ancistrobrevoline B (15) in methanol- d_4 .

Figure S15: 1 H- 1 H COSY spectrum of ancistrobrevoline B (15) in methanol- d_{4} .

Figure S16: $^{1}H^{-1}H$ NOESY spectrum of ancistrobrevoline B (15) in methanol- d_{4} .

21

(uudd) tj

Figure S17: ¹H-¹³C HSQC spectrum of ancistrobrevoline B (15) in methanol- d_4 .

Figure S18: 1 H- 13 C HMBC spectrum of ancistrobrevoline B (15) in methanol- d_4 .

Figure S19: HR-ESI-MS spectrum of ancistrobrevoline B (15).

Accumulation	8	
Resolution	4 cm-1	0
Zero Filling	ON	HO
Apodization	Cosine	
Gain	Auto (4)	
Scanning Speed	Auto (2 mm/sec)	P
Date/Time	28.02.2019 10:12	L 🔶 OMe Me
Update	28.02.2019 11:03	MeO
Operator	Student	Me
File Name	Memory#1	MeO 15
Sample Name	-	
Comment		

No.	cm-1	%Т	No.	cm-1	%Т	No.	cm-1	%Т
1	2965.02	101.992	2	2927.41	101.48	3	1678.73	87.3932
4	1587.13	95.7282	5	1463.71	95.13	6	1428.03	96.6252
7	1383.68	97.0048	8	1196.61	90.7378	9	1135.87	90.4213
10	836.955	99.4485	11	803.206	99.0842	12	673.999	93.8082

Figure S20: IR spectrum of ancistrobrevoline B (15).

Figure S21a: ECD spectrum of ancistrobrevoline B (15).

Figure S21b: Assignment of the absolute configuration of ancistrobrevoline B (**15**) by comparison of its ECD spectrum with that of ancistrobrevoline A (**14**).

Figure S22: Oxidative degradation of ancistrobrevoline B (15).

Figure S23: ¹H NMR spectrum of ancistrobrevoline C (16) in methanol- d_4 .

Figure S24: ¹³C NMR spectrum of ancistrobrevoline C (16) in methanol- d_4 .

Figure S25: ¹³C DEPT 135 NMR spectrum ancistrobrevoline C (16) in methanol- d_4 .

Figure S26: ¹H-¹H COSY spectrum of ancistrobrevoline C (16) in methanol- d_4 .

31

Figure S27: ¹H-¹H NOESY spectrum of ancistrobrevoline C (**16**) in methanol-*d*₄.

Figure S28: 1 H- 13 C HSQC spectrum of ancistrobrevoline C (16) in methanol- d_4 .

Figure S29: 1 H- 13 C HMBC spectrum of ancistrobrevoline C (16) in methanol- d_4 .

Figure S30: HR-ESI-MS spectrum of ancistrobrevoline C (16).

Figure S31: IR spectrum of ancistrobrevoline C (16).

Figure S32a: ECD spectrum of ancistrobrevoline C (16).

Figure S32b: Assignment of the absolute configuration of ancistrobrevoline C (16) by comparison of its ECD spectrum with that of ancistrobrevoline A (14).

Figure S33: Oxidative degradation of ancistrobrevoline C (16).

Figure S34: ¹H NMR spectrum of ancistrobrevoline D (17) in methanol- d_4 .

Figure S35: ¹³C NMR spectrum of ancistrobrevoline D (17) in methanol- d_4 .

Figure S36: ¹³C DEPT 135 NMR spectrum ancistrobrevoline D (17) in methanol-*d*4.

(uudd) tj

Figure S37: ¹H-¹H COSY spectrum of ancistrobrevoline D (17) in methanol- d_4 .

(uudd) τι

Figure S38: 1 H- 1 H NOESY spectrum of ancistrobrevoline D (17) in methanol- d_{4} .

Figure S39: ¹H-¹³C HSQC spectrum of ancistrobrevoline D (17) in methanol- d_4 .

Figure S40: 1 H- 13 C HMBC spectrum of ancistrobrevoline D (17) in methanol- d_4 .

45

Figure S41: HR-ESI-MS spectrum of ancistrobrevoline D (17).

N-Me

C

Me 7

C

Me

НО

MeO

Figure S42: IR spectrum of ancistrobrevoline D (17).

Figure S43a: ECD spectrum of ancistrobrevoline D (17).

Figure S43b: Assignment of the absolute configuration of ancistrobrevoline D (17) by comparison of its ECD spectrum with that of ancistrobrevoline C (16).

Figure S44: Oxidative degradation of ancistrobrevoline D (17).