Supplementary Information

Photoelectrochemical Performance of Spin Coated TiO₂ Protected BiVO₄ - Cu₂O Thin Films Tandem Cell for Unassisted Solar Water Splitting

S.R.Sitaaraman¹, A. Nirmala Grace², Raja Sellappan²

¹School of Electronics Engineering, Vellore Institute of Technology, Vellore, India-632014.

²Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, India-632014.

1. Structural characterization

Figure S1, Raman Spectra indicating the presence of Mo doping related peak in Mo-BiVO₄, Mo-BiVO₄/FeOOH, Mo-BiVO₄/TiO₂ and Mo-BiVO₄/TiO₂/FeOOH photoanodes and (b) Raman spectra indicating the presence of MoS_2 co-catalyst in Cu₂O/MoS₂ and Cu₂O/TiO₂/MoS₂ photocathodes

2. Morphological characterisation

Figure S2, Cross-sectional FESEM micrograph of (a) Mo-BiVO₄/TiO₂/FeOOH photoanode and (b) Cu₂O/TiO₂/MoS₂ photocathode

Figure S3, EDS mapping spectra of Mo-BiVO₄/TiO₂/FeOOH photoanode

Figure S4, *EDS mapping spectra of Cu₂O/TiO₂/MoS₂ photocathode*

3. Photoelectrochemical characterization

Figure S5, Chopped LSV response of (a) BiVO₄, (b) Mo-BiVO₄, (c) Mo-BiVO₄/FeOOH, (d) Mo-BiVO₄/TiO₂ and (e) Mo-BiVO₄/TiO₂/FeOOH photoanodes in 0.1 M Na₂SO₄ (pH 6) tested using 300 W Xenon lamp corrected to power intensity 100 mW cm⁻²

Table S1, Comparison of various PEC performance of BiVO₄ based photoanodes reported in *literature*

Photoanode	Preparation method	Electrolyte (pH)	Current density (mA cm ⁻²) at 1.23 V vs RHE	References
BiVO4/TiO2/FeOOH	Electrodeposition method	0.2 M phosphate buffer (pH 8)	3.28 mA cm ⁻²	1
W doped BiVO ₄	Spray pyrolysis	0.5 M Na ₂ SO ₄ + 0.09M KH ₂ PO ₄	1.5 mA cm ⁻²	2
BiVO ₄ /NiO	Electrodeposition method	0.5 M Na ₂ SO ₄ (pH 7)	1.2 mA cm ⁻²	3
BiVO4/ Cu porphyrin	Electrodeposition method	0.1 M Na ₂ SO ₄	1.25 mA cm^{-2}	4
Mo doped BiVO ₄	Hydrothermal method	0.5 M Na ₂ SO ₄	0.8 mA cm^{-2}	5
Li doped BiVO ₄	Pulsed laser deposition	Phosphate buffer solution	0.8 mA cm ⁻²	6
WO ₃ /BiVO ₄	Metal organic deposition method	0.1 mol/L phosphate buffer solution (pH 7.2)	0.9 mA cm ⁻²	7
WO ₃ /BiVO ₄	Spin coating method	0.5 M Na ₂ SO ₄	0.43 mA cm^{-2}	8
BiVO ₄	Electrodeposition method	0.5 M Na ₂ SO ₄ + 20 mM Fe ₂ (SO ₄) ₃ (pH 2.4)	1 mA cm ⁻²	9
W,Mo doped BiVO ₄ /FeOOH	Drop casting	0.1 M Na ₂ SO ₄ (pH 7)	0.85 mA cm-2	10
W doped BiVO ₄ /FeCoW	Dip coating	1 M NaOH	0.6 mA cm ⁻²	11
Mo doped BiVO ₄ /TiO ₂ /FeOOH	Spin coating	0.1 M Na ₂ SO ₄ (pH 6)	0.81 mA cm^{-2}	THIS WORK

Figure S6, Chopped LSV response of (a) Cu₂O, (b) Cu₂O/MoS₂, (c) Cu₂O/TiO₂/MoS₂ and (d) Cu₂O/TiO₂/MoS₂ photocathodes 0.1 M Na₂SO₄ (pH 6) tested using 300 W Xenon lamp corrected to power intensity 100 mW cm⁻²

Table S2,	Comparison of various	PEC performance of	f Cu ₂ O based photoan	odes reported in
literature				

Photocathode	Preparation method	Electrolyte (pH)	Current density (mA cm ⁻²)	References
Cu/Cu2O/AZO/TiO2/ RuOx	Electrodeposition method	0.5 M Na ₂ SO ₄ +0.1 M phosphate buffer (pH 9)	-6.5 mA cm ⁻²	12
Cu ₂ O	Electrodeposition method	sition $\begin{array}{c c} 0.2 \text{ M} \\ \text{phosphate} \\ \text{buffer (pH} \\ 8) \end{array}$ -1.8 mA cm ⁻²		1
Cu ₂ O	Electrodeposition method	0.5 M Na- 2SO4	-1.7 mA cm ⁻² at 0 V vs RHE	13
Cu ₂ O/AZO/TiO ₂ /Pt	Electrodeposition method	0.5 M Na ₂ SO ₄	-1 mA cm ⁻² at 0 V vs RHE	14
Cu ₂ O nanoparticle	Wet chemical process	1 M Na ₂ SO ₄	-0.2 mA cm ⁻² at - 0.6 V vs Ag/AgCl	15
Cu ₂ O micro/nanostructures	Thermal decomposition method	0.5 M Na ₂ SO ₄	-1.6 mA cm ⁻² at - 0.6 V vs Ag/AgCl	16
Cu ₂ O/MoS ₂	Hydrothermal method	0.5 M Na ₂ SO ₄	-1.7 mA cm ⁻² at - 0.6 V vs Ag/AgCl	17
Cu ₂ O/CuO	Electrodeposition method	0.1 M Na ₂ SO ₄ (pH 6.25)	-1.2 mA cm ⁻² at 0 V vs RHE	18

Carbon modified	Thermal	0.5 M	-0.4 mA cm ⁻² at -	19
Cu ₂ O nanoneedles	decomposition	$Na_2SO_4 +$	0.5 V vs Ag/AgCl	
	method	0.1 M		
		KH ₂ PO ₄		
		(pH 5)		
Cu ₂ O/NiO/Cu ₂ MoS ₄	Electrodeposition	1 M	-1.25 mA cm ⁻² at 0	20
	method	Na_2SO_4	V vs RHE	
		(pH 5)		
Cu ₂ O/NiFE LDH	Electrodeposition	0.5 M	-0.4 mA cm ⁻² at -	21
	method	Na ₂ SO ₄	0.2 V vs Ag/AgCl	
Au@Cu ₂ O core shell	Wet chemical	0.5 M	-30 µA cm ⁻² at 0.38	22
nanocrystals	process	Na ₂ SO ₄	V vs RHE	
		(pH 6.5)		
Cu ₂ O/TiO ₂ /MoS ₂	Electrodeposition	0.1 M	-1.88 mA cm ⁻² at 0	THIS
	method	Na ₂ SO ₄	V vs RHE	WORK
		(pH 6)		

Figure S7, Chronoamperometric stability tests (j vs t) of (a) Bare BiVO₄, Mo-BiVO₄/FeOOH, and Mo-BiVO₄/TiO₂/FeOOH photoanodes at 1.23 V vs RHE (b) Bare Cu₂O, Cu₂O/MoS₂ and Cu₂O/TiO₂/MoS₂ photocathodes at 0 V vs RHE using 0.1 M Na₂SO₄ (pH 6) under 300 W Xenon lamp corrected to power intensity of 100 mW cm⁻². The illumination was chopped for every 500 seconds.

The stability tests (j vs t) was performed for BiVO₄ photoanodes and Cu₂O photocathodes at 1.23 V vs RHE and 0 V vs RHE, respectively for 2000 seconds (figure S7). Light was not illuminated for the initial 10 seconds and the illumination was chopped for every 500 seconds. During dark condition, the photoanode show very low current density on the order of few μ A cm⁻². When illumination was switched on after 10 seconds, a transient spike in current density was noticed due to the recombination effect. After some time, the current density remains stable for Mo-BiVO₄/TiO₂/FeOOH. The values of retention % of BiVO₄ photoanodes are tabulated in table S3. Similarly, Cu₂O, Cu₂O/MoS₂ and Cu₂O/TiO₂/MoS₂ photocathodes was tested at water reduction potential for 2000 seconds. Bare Cu₂O photocathode produces very low current density in the j vs t test. The addition of TiO₂ protective layer and MoS₂ co-catalyst increased

the stability and minimized the recombination by showing the retention percentage of 82.2 % and 84.4 % for Cu_2O/MoS_2 and $Cu_2O/TiO_2/MoS_2$ photocathode, respectively (Table S4).

Table S3, Tabulation of retention percentage obtained from chronoamperometric stability tests (*j* vs t) (from figure S6 (b)) of BiVO₄, Mo-BiVO₄/FeOOH and Mo-BiVO₄/TiO₂/FeOOH photoanodes

Photoanodes	Current density at 100 seconds (mA cm ⁻²)	Current density at 2000 seconds (mA cm ⁻²)	Retention (%)
BiVO ₄	0.268	0.223	83.2
Mo- BiVO4/FeOOH	0.511	0.397	77.6
Mo- BiVO4/TiO2/FeOOH	0.867	0.826	95.2

The retention percentage was calculated by dividing the current density obtained at 2000 s with the current density at 100 s.

Table S4, Tabulation of retention percentage obtained from chronoamperometric stability test (j vs t) (from figure S6 (b)) of Cu₂O/MoS₂ and Cu₂O/TiO₂/MoS₂ photocathodes

Photocathodes	Current density at 100 seconds (mA cm ⁻²)	Current density at 2000 seconds (mA cm ⁻²)	Retention (%)
Cu ₂ O/MoS ₂	-0.582	-0.488	82.2 %
Cu ₂ O/TiO ₂ /MoS ₂	-1.637	-1.382	84.4 %

Analysis of BiVO4 based photoanodes in Na₂SO₃ hole scavenger

Figure S8, (a) LSV response of BiVO₄ photoanodes recorded in 0.1 M Na₂SO₄ + 0.1 M Na₂SO₃ hole scavenger, (b) Charge separation efficiency, (c) hole injection efficiency and (d) Calculated applied bias photon-to-current (ABPE) efficiency measured in 0.1 M Na₂SO₄ (pH 6) using 300 W Xenon lamp corrected to power intensity of 100 mW cm⁻²

Figure S9, LSV response of front-side and back-side illumination of (a) Mo-BiVO₄/TiO₂/FeOOH photoanode and (b) Cu₂O/TiO₂/MoS₂ photocathode

Electrochemical impedance spectroscopy studies

Figure S10, Equivalent circuit obtained by fitting EIS spectra of $BiVO_4$ photoanodes, Cu_2O photocathodes using Z View software. The equivalent circuit was obtained by using quick fit option and the equivalent circuit of all photoanodes and photocathodes is similar to Randle's circuit

Photoanode	$\mathbf{R}_{s}\left(\Omega ight)$	$\mathbf{R}_{\mathrm{ct}}\left(\Omega ight)$	CPE-T	C _{PE} -P
BiVO ₄	361.7Ω	934.9 Ω	6.457×10 ⁻⁵	0.856
Mo-BiVO ₄	<i>134.2</i> Ω	610.3 Ω	7.101×10 ⁻⁵	0.823
Mo-BiVO4/FeOOH	<i>130.5</i> Ω	<i>499.7</i> Ω	6.4122×10 ⁻⁵	0.892
Mo-BiVO4/TiO2	83.38 Ω	<i>446.9</i> Ω	9.6228×10 ⁻⁵	0.884
Mo-BiVO4/TiO2/FeOOH	<i>41.83</i> Ω	<i>416</i> Ω	0.00013607	0.827
Photocathode	$\mathbf{R}_{\mathrm{s}}\left(\Omega ight)$	$\mathbf{R}_{\mathrm{ct}}\left(\Omega ight)$	CPE-T	C _{PE} -P
Cu ₂ O	$89.79 \ \Omega$	1619Ω	0.000199	0.48721
Cu ₂ O/MoS ₂	75.65 Ω	812.5 Ω	3.067×10 ⁻⁵	0.73933
Cu ₂ O/TiO ₂	79.86 Ω	<i>1091</i> Ω	5.807×10-5	0.66102
Cu2O/TiO2/MoS2	72.96 Ω	823.2 Ω	0.000234	0.69017

Table S5, *Tabulation of obtained equivalent circuit parameters of all BiVO*⁴ *photoanodes and Cu*₂*O photocathodes*

Mott-Schottky analysis

$$\frac{1}{C_{sc}^2} = \frac{2}{\varepsilon_r \varepsilon_0 A^2 e N_{Dopant}} \left(E - E_{fb} - \frac{kT}{e} \right)$$

The Mott-Schottky plot is a measure of capacitance of space charge layer (C_{SC}) of the photoelectrodes as function of applied potential. where ε_r is the relative permittivity of the photoelectrode, ε_0 is the permittivity in vacuum, A is the surface area of the electrode, *e* is the charge of an electron, N_{Dopant} is the free carrier density, *k* is the Boltzmann constant, T is the temperature and E is applied potential.

The Mott Schottky plot of photoanodes and photocathodes were recorded in dark condition at 1 kHz frequency. The result of M-S plot is presented in figure S11 and S12. From the M-S plot, the type of the semiconductor material, flat band potential (E_{FB}) and donor density can be found which is paramount for analysing photoelectrochemical behaviour of the photoelectrodes. For BiVO₄ photoanodes (figure S11), the slope of the curve indicated the n-type behaviour. The x-intercept of the curve provides the E_{FB} . The variation in the flat band potential of BiVO₄ based photoanodes is little with respect to the addition of layers. The E_{FB} value of bare BiVO₄ was similar to the reported values in the literature ²³ that is, ~ 0.048 V vs RHE. The major shift in the M-S plot was observed after the addition of TiO₂ protective layer and FeOOH catalyst. The E_{FB} was cathodically shifted to ~ -0.164V vs RHE for Mo-BiVO₄/TiO₂/FeOOH. The negative shift indicates the improvement in the overpotential of the water oxidation. The addition of FeOOH improves current density at a minimum applied potentials which in turn improves the overall efficiency of the tandem cell by increasing the operating points of the tandem cell. The Cu₂O based photocathodes showed anodic slope indicating p-type behaviour (figure S12). The

 E_{FB} of Cu₂O based photocathodes was calculated using the corresponding x-intercept. The observed E_{FB} of the bare Cu₂O was 0.52 V vs RHE which is close to the reported value. The E_{FB} of Cu₂O/TiO₂/MoS₂ photocathode was shifted cathodically to 0.64 V vs RHE. The shift in the E_{FB} is attributed to the addition of TiO₂ protective layer as well as MoS₂ catalyst. The table S6 shows the measured flat band potential and the dopant density of all the prepared photoanodes and photocathodes. The more cathodic flat band values of Mo-BiVO₄/TiO₂/HeOOH among all the prepared photoanodes and the more anodic flat band values of Cu₂O/TiO₂/MoS₂ among all the prepared photocathodes could be better suitable for tandem cells as it can improve the current density at lower potentials due to reduced charge carrier recombination.

Figure S11, Mott-Schottky plots of (a)BiVO₄, (b) Mo-BiVO₄, (c) Mo-BiVO₄/FeOOH, (d) Mo-BiVO₄/TiO₂, Mo-BiVO₄/TiO₂/FeOOH photoanodes measured in 0.1 M Na₂SO₄ (pH 6) under dark condition

Figure S12, Mott-Schottky plots of (a) Cu₂O, (b) Cu₂O/MoS₂, (c) Cu₂O/TiO₂, (d) Cu₂O/TiO₂/MoS₂ photocathodes measured in 0.1 M Na₂SO₄ (pH 6) measured under dark condition

Table S6, Tabulation of obtained parameters from Mott-Schottky plot of BiVO₄ photoanodes and Cu₂O photocathodes

Photoanode	Flat band potential E _{FB} (V) vs RHE	Slope	Dopant density (cm ⁻³)
BiVO ₄	-0.038 V	1.77×10 ⁹	7.96×10 ²¹
Mo-BiVO4	-0.039 V	1.66×10 ⁹	8.49×10 ²¹
Mo-BiVO4/FeOOH	-0.087 V	1.63×10 ⁹	8.65×10 ²¹

Mo-BiVO4/TiO2	-0.034 V	1.55×10 ⁹	9.09×10 ²¹
Mo-BiVO4/TiO2/FeOOH	-0.175 V	1.34×10 ⁹	10.5×10^{21}
Photocathode	Flat band potential E _{FB} (V) vs RHE	Slope	Dopant density (cm ⁻³)
Cu ₂ O	0.53	-3.32×10 ¹⁰	4.24×10^{20}
Cu ₂ O/MoS ₂	0.60	-2.43×10 ¹⁰	5.80×10^{20}
Cu ₂ O/TiO ₂	0.50	-7.13×10 ¹⁰	1.97×10 ²⁰
Cu2O/TiO2/MoS2	0.61	-1.38×10 ¹⁰	10.2×10 ²⁰

Constructed Tandem cell Images

Figure S13, Photograph of the constructed tandem cell (Mo-BiVO₄/TiO₂/FeOOH-Cu₂O/TiO₂/MoS₂)

Table S7	, Comparison	of	reported	$BiVO_4$	based	tandem	cells	for	unassisted	solar	water
splitting											

Photoano de	Photocathod e	Operating points	Unassisted current density (mA cm ⁻²)	Electrolyte (pH)	Ref.
W:BiVO4/ CoPi	CuBi ₂ O ₄ /CdS /TiO ₂ /RuO _x	0.3 mA cm ⁻² , 0.64 V vs RHE	0.1 mA cm ⁻²	0.3 M K ₂ SO ₄ + 0.2 M phosphate buffer (pH 6.8)	24

H:BiVO ₄ / NiFeO _x	Cu ₂ O/Ga ₂ O ₃ / TiO ₂ /NiMo	2.45 mA cm ⁻² , 0.6 V vs RHE	2.5 mA cm ⁻²	0.1 M Na ₂ CO ₃ +0.1 M NaHCO ₃ (pH 9)	12
BiVO ₄ nanostruct ures	Cu ₂ O/ H:Ti ₃ C ₂ T _x	0.45 mA cm ⁻²	0.28 mA cm^{-2}	0.1 M KPi (pH 7)	25
BiVO ₄ nanostruct ures/ Co- B _i	CuBi ₂ O ₄ / Co-B _i	0.11 mA cm ⁻² , 0.2 V vs RHE	36 μA cm ⁻²	0.5 M Na ₂ SO ₄ (pH 9.2)	26
Mo doped BiVO4/Co -Pi	CuBi ₂ O ₄ /Pt	0.15 mA cm ⁻²	0.1 mA cm ⁻²	0.1 M potassium phosphate (KPi) buffer	27
BiVO ₄	CIGS/CdS/ Al ₂ O ₃ /TiO ₂ / Pt	1 mA cm ⁻²	0.8 mA cm ⁻²	1 M Potassium borate (pH 9.2)	28
Mo- BiVO4/Co -Pi	Si/Pt	0.6 mA cm ⁻² , 0.38 V vs RHE	0.15 mA cm^{-2}	0.1 M potassium phosphate (pH 5.5)	29
BiVO ₄ /Ti O ₂ /FeOO H	Cu ₂ O	0.36 mA cm ⁻² , 0.37 V vs RHE	0.1 mA cm ⁻²	0.2 M phosphate buffer (pH 8)	1
BiVO ₄	CZTS/HfO ₂ / CdS/Pt	2.5 mA cm ⁻² , 0.6 V vs RHE	2.3 mA cm ⁻²	0.2 M phosphate buffer (pH 6.5)	30
W:BiVO4	Si/Pt	2.5 mA cm ⁻² 0.55 V vs RHE	2.5 mA cm ⁻²	0.1 M potassium phosphate (pH 7.3)	31
W:BiVO4	Cu ₂ O/AZO/ TiO ₂ /RuO _x	0.6 mA cm ⁻² , 0.45 V vs RHE	-0.1 mA cm ⁻²	0.5M Na ₂ SO ₄ + 0.01 M K ₂ HPO ₄	2
Mo- BiVO4/Ti O2/FeOO H	Cu ₂ O/TiO ₂ / MoS ₂	0.129 mA cm ⁻² , 0.66 V vs RHE	65.3 μA cm ⁻²	0.1 M Na ₂ SO ₄ (pH 6)	THIS WORK

4. Characterization of photoanodes and photocathodes after PEC test

4.1 Structural characterization

*Figure S14, XRD spectra of (a) Mo-BiVO*₄/*TiO*₂/*FeOOH photoanode and (b) Cu*₂*O*/*TiO*₂/*MoS*₂ *photocathode before and after PEC tests*

XRD spectra of Mo-BiVO₄/TiO₂/FeOOH photoanode and Cu₂O/TiO₂/MoS₂ photocathode is presented in figure S14. After conducting PEC performances such as LSV, j vs t (Stability), EIS and Mott-Schottky analysis were conducted on the photoanode and photocathode, the XRD spectra was again recorded. The XRD spectra of Mo-BiVO₄/TiO₂/FeOOH before and after PEC test (figure S14 (a)) are matched and well-indexed with JCPDS card no. 014-6888 ³². The peak at 18° and 29° corresponds to the signature peak of monoclinic scheelite BiVO₄. No significant peaks was observed for TiO₂ and FeOOH catalyst layers. Similarly, after the PEC tests, no shift in peak was observed in the XRD spectra of Mo-BiVO₄/TiO₂/FeOOH photoanodes. Similarly, XRD spectra of Cu₂O/TiO₂/MoS₂ photocathode before and after PEC test (figure S14 (b)) corresponds to JCPDS card no.: 65-3288 ³³. The majority peak at 36.3° corresponds to the formation of Cu₂O (111) orientation. No shift or additional peaks obtained for TiO₂ layer because of the lower content of TiO₂. MoS₂ catalyst coated on the photocathode produced a major peak at 14.1°, 43.2° and 60.11° correspond to JCPDS card no.: 96-101-1287. Even after the PEC tests, the XRD spectra of photocathode matches well with the above mentioned JCPDS cards indicating no change in crystal phase.

4.2 Morphological characterization

FESEM micrograph of Mo-BiVO₄/TiO₂/FeOOH photoanode and Cu₂O/TiO₂/MoS₂ photocathode are presented in figure S15 (a to d). The Figure S15 (a) and (b) are the FESEM micrograph of Mo-BiVO₄/TiO₂/FeOOH before and after PEC test, respectively. The translucent film observed on top (S15 a) was attributed to FeOOH film which was further confirmed by EDS mapping shown in figure S16 and S17. After PEC test, the FeOOH layer on the photoanode was reduced due to improper adhesion and/or the prolonged exposure of the catalyst to the electrolyte. Figure S15 (c) and (d) show the FESEM micrograph of Cu₂O/TiO₂/MoS₂ before and after PEC test, respectively. The morphology of the photocathode before PEC tests was nano-sheets like morphology which was assigned to MoS₂ co-catalyst

layer. After PEC tests, the MoS_2 co-catalyst was reduced from the photocathode as evidenced from the EDS mapping presented in figure S18 and S19.

*Figure S15, FESEM micrograph of Mo-BiVO*₄/*TiO*₂/*FeOOH photoanode and Cu*₂*O*/*TiO*₂/*MoS*₂ *photocathode (a and c) before and (b and d) after PEC test*

Figure S16, EDS Colour mapping of Mo-BiVO₄/TiO₂/FeOOH photoanode before PEC test

Figure S17, EDS Colour mapping of Mo-BiVO₄/TiO₂/FeOOH photoanode after PEC test

Figure S18, EDS Colour mapping of Cu₂O/TiO₂/MoS₂ photocathode before PEC test

Figure S19, EDS Colour mapping of Cu₂O/TiO₂/MoS₂ photocathode after PEC test

4.3 X-ray photoelectron spectroscopy (XPS) analysis

Figure S20, XPS survey spectra of (a) Mo-BiVO₄/TiO₂/FeOOH photoanode and Cu₂O/TiO₂/MoS₂ photocathode before and after PEC test

The XPS spectra was analyzed for Mo-BiVO₄/TiO₂/FeOOH photoanode and Cu₂O/TiO₂/MoS₂ photocathode before and after PEC test to understand the chemical states. The survey spectrum indicates the presence of Mo, Bi, V, O, Ti and Fe in figure S20 (a), which originates from Mo-BiVO₄/TiO₂/FeOOH photoanode. Figure S21 shows the core level XPS spectra of Mo 3d, Bi 4f, V 2p, O1s, Ti 2p and Fe 2p. The Mo 3d peaks at 232.38 eV and 236.63 eV before and after PEC tests was assigned to Mo 3d_{5/2} and Mo3d_{3/2}, respectively confirming Mo⁶⁺ oxidation state ³⁴. The Bi 4f spectrum presents two peaks before and after PEC test around binding energies of 158.99 eV and 164.32 eV corresponding to Bi 4f_{7/2} and Bi 4f_{5/2}, respectively and the result proves the presence of Bi³⁺ oxidation state. The V 2p spectrum peaks around 516.90 eV and 524.37 eV before and after PEC test was assigned to V 2p_{3/2} and V 2p_{1/2} which represents V⁵⁺ oxidation state³⁵. The O 1s spectrum exhibits two peaks at 530.34 eV and 531.80 eV which are

doublet peaks because of lattice O and surface hydroxyl group (Fe – OH) on BiVO₄ ³⁶. It was observed that surface hydroxyl group peak at 531.80 eV is reduced in intensity after PEC test due to loss of FeOOH catalyst. The observed binding energies signify the core level formation of BiVO₄. The Ti 2p spectrum yields peaks at 458.87 eV and 464.45 eV corresponding to core level of TiO₂ layer (Ti⁴⁺ oxidation state). The result proves the presence of TiO₂ layer on photoanode before and after PEC test. Binding energies peaks at 711.35 eV and 724.34 eV was attributed to Fe 2p_{1/2} and Fe 2p_{3/2} confirming Fe³⁺ oxidation state. The intensity of photoanode after PEC test is reduced which exhibits the lower content of FeOOH on the surface of photoanode.

Figure S21, High resolution XPS spectra of Mo-BiVO₄/TiO₂/FeOOH photoanode performed before and after PEC test in which (a) Mo 3d, (b) Bi 4f, (c) V 2p, (d)O 1s, (e) Ti 2p and (f) Fe 2p of photoanode

The survey spectrum in figure 20 (b) indicates the presence of Cu, O, Ti, Mo and S for Cu₂O/TiO₂/MoS₂ photocathode. Figure S22 (a to d) shows the core level XPS spectra of Cu 2p, O 1s, Ti 2p, Mo 3d of Cu₂O, TiO₂ protective layer and MoS₂ catalyst before and after the PEC test. Before PEC test, the observed Cu 2p spectra at 932.96 eV and 952.75 eV are ascribed to Cu $2p_{3/2}$ and Cu $2p_{1/2}$. The result signifies the presence of Cu⁺ oxidation state in Cu₂O ³⁷. After PEC test, in addition to the existing the Cu⁺ oxidation state, the Cu²⁺ oxidation state of CuO is also observed at 935.05 eV in the XPS spectra due to possibly photooxidation of Cu₂O 38,39 . The result indicates that the TiO₂ protection layer might have some non-uniformity as well as porosity. The O 1s spectrum exhibits a single peak at 530.95 eV which is the lattice oxygen of Cu_2O^{40} . The presence of TiO₂ layer before and after PEC test was confirmed by the peaks at 458.29 eV and 464.32 eV which corresponds to Ti $2p_{1/2}$ and Ti 2p state from core level TiO₂. The oxidation state was Ti⁴⁺ for Ti in TiO₂ layer. The presence of MoS₂ was confirmed by Mo 3d spectrum with peak at 232.28 eV and 235.71 eV which points 2H phase of MoS₂⁴¹. The intensity of Mo $3d_{3/2}$ peaks are greatly reduced after PEC test which signifies the loss of MoS₂ catalyst after PEC test. The presence of peaks at 161.47 eV and 162.78 eV confirms the presence of sulfur in MoS_2 before and after the PEC test ⁴².

Figure S22, High resolution XPS spectra of Cu₂O/TiO₂/MoS₂ photocathode performed before and after PEC test in which (a) Cu 2p, (b) O 1s, (c) Ti 2p and (d) Mo 3d and (e) S 2p of photocathode

Reference:

- 1 X. Yin, Q. Liu, Y. Yang, Y. Liu, K. Wang, Y. Li, D. Li, X. Qiu, W. Li and J. Li, *Int. J. Hydrogen Energy*, 2019, **44**, 594–604.
- 2 P. Bornoz, F. F. Abdi, S. D. Tilley, B. Dam, R. Van De Krol, M. Graetzel and K. Sivula, *J. Phys. Chem. C*, 2014, **118**, 16959–16966.
- 3 S. Bai, J. Han, K. Zhang, Y. Zhao, R. Luo, D. Li and A. Chen, *Int. J. Hydrogen Energy*, 2022, **47**, 4375–4385.
- 4 M. S. Sudi, L. Zhao, Q. Wang, Y. Dou, X. Shen, A. Wang and W. Zhu, *Appl. Surf. Sci.*, 2022, **606**, 154753.
- 5 S. S. Kalanur, Y. J. Lee and H. Seo, *Appl. Surf. Sci.*, 2021, **562**, 150078.
- 6 C. Zhou, Z. Sanders-Bellis, T. J. Smart, W. Zhang, L. Zhang, Y. Ping and M. Liu, *Chem. Mater.*, 2020, **32**, 6401–6409.
- 7 Y. Taga, Z. Pan, K. Katayama and W. Y. Sohn, ACS Appl. Energy Mater., 2022, 3–8.
- 8 E. Park, S. S. Patil, H. Lee, V. S. Kumbhar and K. Lee, *Nanoscale*, 2021, **13**, 16932–16941.
- 9 W. Han, H. Lin, F. Fang, Y. Zhang, K. Zhang, X. Yu and K. Chang, *Catal. Sci. Technol.*, 2021, **11**, 7598–7607.
- 10 E. J. Joo, G. Park, J. S. Gwak, J. H. Seo, K. Y. Jang, K. H. Oh and K. M. Nam, *J. Nanomater.*, , DOI:10.1155/2016/1827151.
- 11 X. Liang, J. Xie, J. Xiong, L. Gong and C. M. Li, *Sustain. Energy Fuels*, 2018, **2**, 2053–2059.
- 12 L. Pan, J. H. Kim, M. T. Mayer, M. K. Son, A. Ummadisingu, J. S. Lee, A. Hagfeldt, J. Luo and M. Grätzel, *Nat. Catal.*, 2018, **1**, 412–420.
- 13 I. R. Hamdani and A. N. Bhaskarwar, *Sol. Energy Mater. Sol. Cells*, 2022, **240**, 111719.
- 14 T. Wang, Y. Wei, X. Chang, C. Li, A. Li, S. Liu, J. Zhang and J. Gong, *Appl. Catal. B Environ.*, 2018, **226**, 31–37.
- 15 Y. G. Lin, Y. K. Hsu, Y. C. Lin, Y. H. Chang, S. Y. Chen and Y. C. Chen, *J. Colloid Interface Sci.*, 2016, **471**, 76–80.
- 16 Y. K. Hsu, C. H. Yu, Y. C. Chen and Y. G. Lin, *Electrochim. Acta*, 2013, **105**, 62–68.
- 17 S. Tiwari, S. Kumar and A. K. Ganguli, J. Photochem. Photobiol. A Chem., 2022, 424, 113622.
- D. Jeong, W. Jo, J. Jeong, T. Kim, S. Han, M. K. Son and H. Jung, *RSC Adv.*, 2022, 12, 2632–2640.
- 19 N. Kaneza, P. S. Shinde, Y. Ma and S. Pan, *RSC Adv.*, 2019, **9**, 13576–13585.

- 20 C. Yang, P. D. Tran, P. P. Boix, P. S. Bassi, N. Yantara, L. H. Wong and J. Barber, *Nanoscale*, 2014, **6**, 6506–6510.
- 21 H. Qi, J. Wolfe, D. Fichou and Z. Chen, *Sci. Rep.*, , DOI:10.1038/srep30882.
- 22 T. Lai, C. Tsao, M. Fang, J. Wu, Y. Chang, Y. Chiu, P. Hsieh, M. Kuo, K. Chang and Y. Hsu, DOI:10.1021/acsami.2c07145.
- 23 S. N. S. Nasir, N. A. Mohamed, M. A. Tukimon, M. F. M. Noh, N. A. Arzaee and M. A. M. Teridi, *Phys. B Condens. Matter*, 2021, **604**, 412719.
- A. Song, P. Bogdanoff, A. Esau, I. Y. Ahmet, I. Levine, T. Dittrich, T. Unold, R. Van De Krol and S. P. Berglund, *ACS Appl. Mater. Interfaces*, 2020, **12**, 13959–13970.
- 25 X. Fu, H. Chang, Z. Shang, P. Liu, J. Liu and H. Luo, *Chem. Eng. J.*, , DOI:10.1016/j.cej.2019.122001.
- 26 Y. H. Lai, K. C. Lin, C. Y. Yen and B. J. Jiang, *Faraday Discuss.*, 2019, **215**, 297–312.
- 27 J. H. Kim, A. Adishev, J. Kim, Y. S. Kim, S. Cho and J. S. Lee, ACS Appl. Energy Mater., 2018, 1, 6694–6699.
- 28 M. Chen, Y. Liu, C. Li, A. Li, X. Chang, W. Liu, Y. Sun, T. Wang and J. Gong, *Energy Environ. Sci.*, 2018, **11**, 2025–2034.
- 29 P. Xu, J. Feng, T. Fang, X. Zhao, Z. Li and Z. Zou, *RSC Adv.*, 2016, 6, 9905–9910.
- 30 D. Huang, K. Wang, L. Li, K. Feng, N. An, S. Ikeda, Y. Kuang, Y. Ng and F. Jiang, *Energy Environ. Sci.*, 2021, 14, 1480–1489.
- 31 F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam and R. Van De Krol, *Nat. Commun.*, 2013, **4**, 1–7.
- 32 H. Luo, C. Liu, Y. Xu, C. Zhang, W. Wang and Z. Chen, *Int. J. Hydrogen Energy*, 2019, **44**, 30160–30170.
- 33 A. Aktar, S. Ahmmed, J. Hossain and A. B. M. Ismail, *ACS Omega*, 2020, **5**, 25125–25134.
- 34 G. Talasila, S. Sachdev, U. Srivastva, D. Saxena and S. S. V Ramakumar, *Energy Reports*, 2020, **6**, 1963–1972.
- 35 D. A. Reddy, Y. Kim, H. S. Shim, K. A. J. Reddy, M. Gopannagari, D. Praveen Kumar, J. K. Song and T. K. Kim, *ACS Appl. Energy Mater.*, 2020, **3**, 4474–4483.
- W. Zhang, J. Ma, L. Xiong, H. Y. Jiang and J. Tang, ACS Appl. Energy Mater., 2020, 3, 5927–5936.
- 37 M. Zhang, J. Wang, H. Xue, J. Zhang, S. Peng, X. Han, Y. Deng and W. Hu, *Angew. Chemie*, 2020, **132**, 18621–18625.
- 38 C. Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal and Y. H. Ng, *Angew. Chemie Int. Ed.*, 2018, **57**, 13613–13617.
- 39 P. Wang, Z. Liu, C. Han, X. Ma, Z. Tong and B. Tan, *J. Nanoparticle Res.*, , DOI:10.1007/s11051-021-05383-2.

- A. A. Dubale, C. Pan, A. G. Tamirat, H. Chen, W. Su, C. Chen, J. Rick, D. W. Ayele,
 B. A. Aragaw, J. Lee, Y. Yang and B. Hwang, *J. Mater. Chem. A Mater. energy* Sustain., 2015, 3, 12482–12499.
- 41 G. Gupta, S. Palchoudhury, P. K. Kahol, S. R. Mishra and F. Perez, 2017, 1–12.
- 42 Q. Lin, X. Dong, Y. Wang, N. Zheng, Y. Zhao, W. Xu and T. Ding, *J. Mater. Sci.*, 2020, **55**, 6637–6647.