Supplementary data

Superhydrophobic and highly moisture-resistant PVA@EC composite membrane for air purification

Zhiqian Liu¹, Linli Qin¹, Sijia Liu¹, Jing Zhang¹, Junhua Wu^{2,*}, Xinquan Liang^{1,*}

¹ School of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning 530000, PR China

² Guangxi Academy of Sciences, Nanning 530000, China

*Corresponding Email: xxwjh@sina.com (Junhua Wu); 19890011@gxu.edu.cn (Xinquan Liang)

Figure S1. (a) SEM images of cross section of the composite air filtration membrane at 3000 magnification; (b) SEM images of the composite air filtration membrane after filtration at 8000 magnification.

Figure S2. Filtration efficiency of PVA(Eo)@EC(Eo) and PVA@EC(Eo) composite membranes for different particle sizes of PM.

Figure S3. Analysis of the structure and pore size of filters: (a) N_2 adsorptiondesorption isothermal line and specific surface area of the filter; (b) Microscopic aperture distribution of filters.

Sample	Surface area (m ² /g)	Pore volume (cm ³ /g)	Pore diameter (nm)
PVA(Eo)@EC(Eo	11 6960	0.008426	2.8640
)	11.0800	0.008426	3.8640
PVA(Eo)	2.4700	0.006061	12.8392

Table S1. Physical properties of PVA(Eo)@EC(Eo) and PVA(Eo) nanofibers.