Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

> **RSC Advances** SUPPORTING INFORMATION

## DFT and COSMO-RS Studies on Dicationic Ionic Liquids (DILs) as Potential Candidates for CO<sub>2</sub> Capture: The Effects of Alkyl Side Chain Length and Symmetry in Cations

Mehrangiz Torkzadeh, Majid Moosavi\*

Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran

\*Corresponding author. Tel.: +98-313-7934942; Fax: +98-313-668-9732 E-mail: m.mousavi@sci.ui.ac.ir



Fig. S1. Calculated spatial distribution of HOMO and LUMO for isolated ions at M06-2X/ccpVDZ level.



**Fig. S2.** Topological graphics of (a)[Bis(mim)C<sub>5</sub>][NTf<sub>2</sub>]<sub>2</sub>, (b)  $[N_{111}-C_5-mim][NTf_2]_2$  and (c) [Bis(mim)C<sub>5</sub>-(C<sub>4</sub>)<sub>2</sub>][NTf<sub>2</sub>]<sub>2</sub> obtained from QTAIM calculations, showing bond critical points (BCP, red circles). For the sake of visibility, bond paths have not been shown.







**Fig. S3.** Optimized structures of isolated ion- $CO_2$  complexes at the M06-2x/cc-pVDZ level of theory. The broken lines show the most important intermolecular interactions between  $CO_2$  molecule and isolated ions (distances are in Å).



**Fig. S4.** Optimized structures of DIL-CO<sub>2</sub> complexes at the M06-2x/cc-pVDZ level of theory. The most important intermolecular interactions (dotted lines) between  $CO_2$  molecule and DILs have been displayed (distances are in Å).



**Fig. S5.** Calculated spatial distribution of HOMO and LUMO for DIL-CO<sub>2</sub> complexes at M06-2X/ccpVDZ level.



Fig. S6. Color-filled RDG isosurfaces and scatter graphs of RDG for DIL-CO<sub>2</sub> complexes. Green and red colors denote vdW interactions and steric contributions, respectively.



**Fig. S7.** Topological graphics of isolated ion- $CO_2$  complexes obtained from QTAIM calculations, showing bond critical points (red circles), and ring critical points (yellow circles). For more visibility, only bond paths (pink lines) have been shown.



**Fig. S8.** Topological graphics of DIL-CO<sub>2</sub> complexes obtained from QTAIM calculations, showing bond critical points (red circles), and ring critical points (yellow circles). For more visibility, only bond paths (pink lines) have been shown.

| Structure                                                               | BCP                                       | $\rho(r)$ | $\sum \rho(r)$ | $\nabla^2 \rho(r)$ | G(r)   | V(r)    | H(r)     | -(G(r)/V(r)) |
|-------------------------------------------------------------------------|-------------------------------------------|-----------|----------------|--------------------|--------|---------|----------|--------------|
|                                                                         |                                           | (a.u.)    | (a.u.)         | (a.u.)             | (a.u.) | (a.u.)  | (a.u.)   |              |
|                                                                         |                                           |           |                |                    |        |         |          |              |
| [Bis(mim)C <sub>5</sub> ][NTf <sub>2</sub> ] <sub>2</sub>               | HS <sub>1</sub> -O <sub>1</sub>           | 0.0146    | 0.2228         | 0.0436             | 0.0109 | -0.0110 | -0.00007 | 0.9909       |
|                                                                         | $HS_3-O_1'$                               | 0.0117    |                | 0.0412             | 0.0097 | -0.0091 | 0.00063  | 1.0659       |
|                                                                         | $HR-O_1$                                  | 0.0139    |                | 0.0432             | 0.0106 | -0.0104 | 0.00023  | 1.0192       |
|                                                                         | $HR-O_1'$                                 | 0.0119    |                | 0.0404             | 0.0096 | -0.0090 | 0.00052  | 1.0666       |
|                                                                         | $HW_2\text{-}O_1{}^\prime$                | 0.0136    |                | 0.0428             | 0.0102 | -0.0100 | 0.00020  | 1.0200       |
|                                                                         | $HW_1$ - $O_1$                            | 0.0094    |                | 0.0376             | 0.0079 | -0.0064 | 0.00149  | 1.2343       |
|                                                                         | $HW_1{'}\text{-}O_2$                      | 0.0088    |                | 0.0360             | 0.0075 | -0.0059 | 0.00157  | 1.2711       |
|                                                                         | $HW_2{^\prime}\text{-}F_2{^\prime}$       | 0.0102    |                | 0.0452             | 0.0099 | -0.0085 | 0.00140  | 1.1647       |
|                                                                         | $HR'-O_2'$                                | 0.0123    |                | 0.0412             | 0.0099 | -0.0094 | 0.00045  | 1.0531       |
|                                                                         | $HR'-O_1'$                                | 0.0170    |                | 0.0584             | 0.0137 | -0.0128 | 0.00088  | 1.0703       |
|                                                                         | $HS_1'-O_2'$                              | 0.0119    |                | 0.0427             | 0.0102 | -0.0090 | 0.00120  | 1.1333       |
|                                                                         | $HS_2'\text{-}O_1'$                       | 0.0089    |                | 0.0284             | 0.0067 | -0.0064 | 0.00036  | 1.0468       |
|                                                                         | $HS_3'-O_1'$                              | 0.0112    |                | 0.0464             | 0.0101 | -0.0087 | 0.00144  | 1.1609       |
|                                                                         | $H_2$ - $O_1'$                            | 0.0101    |                | 0.0356             | 0.0083 | -0.0076 | 0.00064  | 1.0921       |
|                                                                         | H <sub>3</sub> -O <sub>2</sub>            | 0.0109    |                | 0.0372             | 0.0088 | -0.0082 | 0.00055  | 1.0731       |
|                                                                         | $H_6-O_1'$                                | 0.0124    |                | 0.0420             | 0.0099 | -0.0094 | 0.00057  | 1.0531       |
|                                                                         | $H_6-O_2'$                                | 0.0093    |                | 0.0316             | 0.0073 | -0.0067 | 0.00061  | 1.0895       |
|                                                                         | H <sub>3</sub> '-O <sub>2</sub>           | 0.0143    |                | 0.0429             | 0.0106 | -0.0107 | -0.00009 | 0.9900       |
|                                                                         | $\mathrm{H_2'}\text{-}\mathrm{O_2'}$      | 0.0104    |                | 0.0356             | 0.0084 | -0.0078 | 0.00057  | 1.0769       |
| [N <sub>111</sub> -C <sub>5</sub> -mim][NTf <sub>2</sub> ] <sub>2</sub> | $HS_1-O_2'$                               | 0.0129    | 0.2467         | 0.0460             | 0.0108 | -0.0101 | 0.00067  | 1.0693       |
|                                                                         | $\mathrm{HS}_2\text{-}\mathrm{O}_2{}'$    | 0.0129    |                | 0.0456             | 0.0108 | -0.0102 | 0.00061  | 1.0588       |
|                                                                         | HR-O <sub>2</sub> '                       | 0.0118    |                | 0.0426             | 0.0102 | -0.0090 | 0.00120  | 1.1333       |
|                                                                         | HR-O <sub>2</sub>                         | 0.0172    |                | 0.0588             | 0.0140 | -0.0130 | 0.00100  | 1.0769       |
|                                                                         | $\mathrm{HW}_1\text{-}\mathrm{O}_2{}'$    | 0.0105    |                | 0.0348             | 0.0082 | -0.0077 | 0.00054  | 1.0649       |
|                                                                         | $H_1$ - $O_2$                             | 0.0101    |                | 0.0316             | 0.0076 | -0.0073 | 0.00029  | 1.0410       |
|                                                                         | H <sub>3</sub> -O <sub>1</sub>            | 0.0109    |                | 0.0404             | 0.0092 | -0.0083 | 0.00092  | 1.1084       |
|                                                                         | $H_4-O_1'$                                | 0.0079    |                | 0.0256             | 0.0059 | -0.0054 | 0.00050  | 1.0925       |
|                                                                         | $\mathrm{H}_{5}\text{-}\mathrm{O}_{2}{}'$ | 0.0107    |                | 0.0316             | 0.0079 | -0.0078 | 0.00005  | 1.0128       |
|                                                                         | $H_5$ -S'                                 | 0.0099    |                | 0.0380             | 0.0079 | -0.0063 | 0.00160  | 1.2539       |
|                                                                         | H <sub>6</sub> -N                         | 0.0066    |                | 0.0196             | 0.0043 | -0.0037 | 0.00060  | 1.1621       |
|                                                                         | H <sub>6</sub> -O                         | 0.007     |                | 0.0276             | 0.0057 | -0.0045 | 0.00120  | 1.2666       |
|                                                                         | H <sub>7</sub> -O <sub>2</sub>            | 0.0132    |                | 0.0488             | 0.0113 | -0.0104 | 0.00093  | 1.0865       |
|                                                                         | H <sub>8</sub> -N                         | 0.0067    |                | 0.0228             | 0.005  | -0.0042 | 0.00077  | 1.1904       |
|                                                                         | $H_8-O_2$                                 | 0.0086    |                | 0.0304             | 0.0069 | -0.0063 | 0.00066  | 1.0952       |

Table S1. Obtained parameters from QTAIM calculations in the studied DILs. The interactions presented in red are due to the second anion.

|                                                                                           | H9-O2'                                             | 0.0147 |        | 0.0432 | 0.01078 | -0.0108  | 0.00003  | 0.9981 |
|-------------------------------------------------------------------------------------------|----------------------------------------------------|--------|--------|--------|---------|----------|----------|--------|
|                                                                                           | H <sub>9</sub> -O <sub>2</sub>                     | 0.0122 |        | 0.0420 | 0.0099  | -0.0094  | 0.00054  | 1.0531 |
|                                                                                           | $\mathrm{H}_{10}\text{-}\mathrm{O}_{1}{}^{\prime}$ | 0.0126 |        | 0.0392 | 0.0094  | -0.0090  | 0.00041  | 1.0444 |
|                                                                                           | $\mathrm{H}_{11}\text{-}\mathrm{O}_{1}{}'$         | 0.0125 |        | 0.0375 | 0.00939 | -0.00939 | 0.00001  | 1      |
|                                                                                           | H <sub>19</sub> -O <sub>2</sub> '                  | 0.0074 |        | 0.0292 | 0.0063  | -0.0053  | 0.00103  | 1.1886 |
|                                                                                           | H <sub>19</sub> -O <sub>2</sub>                    | 0.0083 |        | 0.0284 | 0.0066  | -0.0060  | 0.00055  | 1.1    |
|                                                                                           | $H_{14}\text{-}O_1'$                               | 0.0112 |        | 0.0360 | 0.0087  | -0.0084  | 0.00029  | 1.0357 |
|                                                                                           | $H_{16}\text{-}O_2$                                | 0.0109 |        | 0.0336 | 0.0082  | -0.0081  | 0.00016  | 1.0123 |
| [Bis(mim)C <sub>5</sub> -(C <sub>4</sub> ) <sub>2</sub> ][NTf <sub>2</sub> ] <sub>2</sub> | H <sub>7</sub> '-O <sub>1</sub>                    | 0.009  | 0.2173 | 0.0376 | 0.0079  | -0.0065  | 0.00140  | 1.2153 |
|                                                                                           | $\mathrm{H_7'}\text{-}\mathrm{O_1}$                | 0.0142 |        | 0.0476 | 0.0115  | -0.0111  | 0.00040  | 1.0360 |
|                                                                                           | H9'-F                                              | 0.0113 |        | 0.0392 | 0.0096  | -0.0094  | 0.00018  | 1.0212 |
|                                                                                           | $HR'-O_1'$                                         | 0.0137 |        | 0.0456 | 0.0109  | -0.0105  | 0.00045  | 1.0380 |
|                                                                                           | HR'-N                                              | 0.0144 |        | 0.0412 | 0.01    | -0.0097  | 0.00027  | 1.0309 |
|                                                                                           | HW <sub>2</sub> '-F                                | 0.0086 |        | 0.0360 | 0.0081  | -0.0072  | 0.00092  | 1.125  |
|                                                                                           | $\mathrm{H_{1}'}\text{-}\mathrm{O_{1}'}$           | 0.0113 |        | 0.0365 | 0.0088  | -0.0085  | 0.00025  | 1.0352 |
|                                                                                           | $\mathrm{H_4'}\text{-}\mathrm{O_1'}$               | 0.0135 |        | 0.0490 | 0.0115  | -0.0107  | 0.00078  | 1.0747 |
|                                                                                           | $\mathrm{H}_{5}\text{-}\mathrm{O}_{1}{}'$          | 0.0087 |        | 0.0356 | 0.0076  | -0.0064  | 0.00129  | 1.1875 |
|                                                                                           | H <sub>5</sub> -N                                  | 0.012  |        | 0.0324 | 0.0081  | -0.0081  | 0.000001 | 1      |
|                                                                                           | H <sub>6</sub> -S                                  | 0.0108 |        | 0.0407 | 0.0087  | -0.0071  | 0.00151  | 1.2253 |
|                                                                                           | H <sub>3</sub> -O <sub>1</sub>                     | 0.0079 |        | 0.0284 | 0.0064  | -0.0056  | 0.00076  | 1.1428 |
|                                                                                           | $H_1$ - $O_1$                                      | 0.0129 |        | 0.0400 | 0.0099  | -0.0098  | 0.00010  | 1.0102 |
|                                                                                           | HR-O <sub>2</sub> '                                | 0.0107 |        | 0.0352 | 0.0083  | -0.0077  | 0.00054  | 1.0779 |
|                                                                                           | HR-O <sub>2</sub>                                  | 0.0147 |        | 0.0476 | 0.0115  | -0.0112  | 0.00033  | 1.0267 |
|                                                                                           | $HW_2\text{-}O_1{}^\prime$                         | 0.0102 |        | 0.0408 | 0.0087  | -0.0073  | 0.00143  | 1.1917 |
|                                                                                           | $HW_1$ -F                                          | 0.0114 |        | 0.0424 | 0.0101  | -0.0096  | 0.00049  | 1.0520 |
|                                                                                           | H <sub>7</sub> -O <sub>2</sub>                     | 0.0145 |        | 0.0428 | 0.0108  | -0.0109  | 0.00011  | 0.9908 |
|                                                                                           | H9-O1                                              | 0.0075 |        | 0.0284 | 0.00622 | -0.0053  | 0.00092  | 1.1735 |

Table S2.Charge transfer calculated in the studiedDILs using CHELPG and NBO methods.

|                                            | Charge transfer |        |  |  |  |
|--------------------------------------------|-----------------|--------|--|--|--|
|                                            | CHELPG NBO      |        |  |  |  |
| $[Bis(mim)C_5][NTf_2]_2$                   | 0.5195          | 0.1738 |  |  |  |
| $[N_{111}-C_5-mim][NTf_2]_2$               | 0.5213          | 0.1882 |  |  |  |
| $[Bis(mim)C_{5}-(C_{4})_{2}][NTf_{2}]_{2}$ | 0.3471          | 0.1624 |  |  |  |

Table S3. NBO analysis of the studied DILs calculated at M06-2x/cc-pVDZ level. Some notable donor-acceptor NBO interactions have been presented. The atoms presented in red are the second anion's atoms.

|                                                                         | Donor NBO (i)               | Acceptor NBO (j)                                 | E(2)/kJ mol <sup>-1</sup> | ΔE <sub>ii</sub> /a.u. | <i>F<sub>ii</sub></i> /a.u. |
|-------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|---------------------------|------------------------|-----------------------------|
|                                                                         |                             | · · · · ·                                        |                           | 3                      | 9                           |
| [Bis(mim)C <sub>5</sub> ][NTf <sub>2</sub> ] <sub>2</sub>               | LP(2) O <sub>1</sub>        | <b>BD*(1)</b> CS-HS <sub>1</sub>                 | 7.03                      | 0.99                   | 0.042                       |
|                                                                         | LP(3) O <sub>1</sub> '      | BD*(1) CR'-HR'                                   | 9.37                      | 0.90                   | 0.042                       |
|                                                                         | LP(1) O <sub>2</sub> '      | <b>BD*(1) CR'-HR'</b>                            | 5.64                      | 1.43                   | 0.039                       |
|                                                                         | LP(1) O <sub>1</sub> '      | <b>BD*(1)</b> C <sub>1</sub> - H <sub>1</sub>    | 4.97                      | 1.43                   | 0.037                       |
|                                                                         | LP(2) O <sub>1</sub> '      | <b>BD*(1) CR'-HR'</b>                            | 5.35                      | 0.90                   | 0.031                       |
|                                                                         | $LP(1) O_1$                 | <b>BD*(1)</b> CW <sub>2</sub> -HW <sub>2</sub>   | 5.10                      | 1.43                   | 0.037                       |
|                                                                         | LP(1) O <sub>1</sub> '      | $BD^*(1) CS - HS_3$                              | 6.48                      | 1.43                   | 0.042                       |
|                                                                         | LP(1) O <sub>2</sub>        | <b>BD*(1)</b> C <sub>2</sub> '-H <sub>3</sub> '  | 6.35                      | 1.44                   | 0.042                       |
|                                                                         | $LP(2) O_2$                 | <b>BD*(1)</b> C <sub>2</sub> '-H <sub>3</sub> '  | 5.27                      | 0.91                   | 0.031                       |
|                                                                         | LP(1) O <sub>1</sub> '      | BD*(1) CR-HR                                     | 4.30                      | 1.44                   | 0.034                       |
|                                                                         | LP(3) O <sub>1</sub> '      | BD*(1) CR-HR                                     | 5.69                      | 0.9                    | 0.033                       |
| [N <sub>111</sub> -C <sub>5</sub> -mim][NTf <sub>2</sub> ] <sub>2</sub> | $LP(1) O_2$                 | BD*(1) CR-HR                                     | 12.04                     | 1.43                   | 0.057                       |
|                                                                         | LP(3) O <sub>2</sub>        | <b>BD*(1) CS-HS</b> <sub>1</sub>                 | 6.02                      | 0.89                   | 0.033                       |
|                                                                         | LP(1) O <sub>2</sub> '      | <b>BD*(1) CS-HS</b> <sub>1</sub>                 | 6.31                      | 1.43                   | 0.042                       |
|                                                                         | $LP(2) O_2'$                | <b>BD*(1)</b> C <sub>3</sub> -H <sub>5</sub>     | 5.94                      | 0.89                   | 0.033                       |
|                                                                         | LP(1) O <sub>1</sub> '      | BD*(1) CN <sub>2</sub> -H <sub>14</sub>          | 6.15                      | 1.42                   | 0.041                       |
|                                                                         | $LP(2) O_1'$                | $BD^{*}(1) CN_{1}-H_{11}$                        | 7.86                      | 0.88                   | 0.038                       |
|                                                                         | LP(3) O <sub>1</sub> '      | $BD^{*}(1) C_{5}-H_{10}$                         | 4.64                      | 0.89                   | 0.029                       |
|                                                                         | $LP(2) O_2$                 | <b>BD*(1)</b> C <sub>5</sub> -H <sub>9</sub>     | 5.39                      | 0.90                   | 0.032                       |
|                                                                         | $LP(2) O_2$                 | $BD^{*}(1) CN_{2}-H_{16}$                        | 4.81                      | 0.88                   | 0.030                       |
|                                                                         | LP(3) O <sub>2</sub> '      | $BD^{*}(1) C_{5}-H_{9}$                          | 9.12                      | 0.90                   | 0.041                       |
|                                                                         | $LP(1) O_2'$                | $BD^*(1) \text{ CS-HS}_2$                        | 6.11                      | 1.42                   | 0.041                       |
| $[Bis(mim)C_5-(C_4)_2][NTf_2]_2$                                        | LP(1) N                     | <b>BD</b> *(1) $C_3$ -H <sub>5</sub>             | 6.99                      | 1.06                   | 0.032                       |
|                                                                         | $LP(1) O_1$                 | <b>BD</b> *(1) C <sub>4</sub> '-H <sub>7</sub> ' | 5.69                      | 1.44                   | 0.043                       |
|                                                                         | $LP(2) O_1$                 | <b>BD</b> *(1) C <sub>4</sub> '-H <sub>7</sub> ' | 3.30                      | 0.91                   | 0.028                       |
|                                                                         | $LP(1) O_1$                 | <b>BD</b> *(1) $C_2$ -H <sub>3</sub>             | 5.23                      | 1.43                   | 0.041                       |
|                                                                         | $LP(1) F_1$                 | <b>BD</b> *(1) $CW_1$ - $HW_1$                   | 5.58                      | 1.73                   | 0.038                       |
|                                                                         | LP(3) $\mathbf{F}_{1}'$     | BD*(1) C <sub>5</sub> '-H <sub>9</sub> '         | 5.54                      | 1.07                   | 0.034                       |
|                                                                         | LP(1) N                     | <b>BD*(1) CR'-HR'</b>                            | 6.35                      | 1.06                   | 0.033                       |
|                                                                         | $LP(2) O_2$                 | <b>BD</b> *(1) C <sub>4</sub> -H <sub>7</sub>    | 7.37                      | 0.9                    | 0.037                       |
|                                                                         | LP(3) O <sub>2</sub> '      | BD*(1) CR-HR                                     | 5.11                      | 0.89                   | 0.031                       |
|                                                                         | <b>LP(1) O</b> <sub>1</sub> | <b>BD*(1)</b> C <sub>1</sub> -H <sub>1</sub>     | 5.83                      | 1.43                   | 0.040                       |
|                                                                         | LP(1) O <sub>2</sub>        | BD*(1) CR-HR                                     | 8.53                      | 1.42                   | 0.047                       |
|                                                                         | LP(2) O <sub>1</sub> '      | <b>BD*(1) CR'-HR'</b>                            | 7.06                      | 0.89                   | 0.037                       |
|                                                                         | <b>LP(3) O</b> <sub>1</sub> | <b>BD</b> *(1) C <sub>1</sub> -H <sub>1</sub>    | 5.06                      | 0.91                   | 0.031                       |
|                                                                         | LP(2) O <sub>1</sub> '      | <b>BD*(1)</b> C <sub>1</sub> '-H <sub>1</sub> '  | 4.72                      | 0.89                   | 0.030                       |

| System                                                                                   | Structure<br>NO. | $\Delta E$ | $D_3$  | $\Delta E_{\rm BSSE}$ | $\Delta E_{\rm c}$ |  |  |  |  |
|------------------------------------------------------------------------------------------|------------------|------------|--------|-----------------------|--------------------|--|--|--|--|
| Ion-CO <sub>2</sub> complexes                                                            |                  |            |        |                       |                    |  |  |  |  |
| $[Bis(mim)C_5]^{2+}-CO_2$                                                                | 1                | -5.71      | -1.33  | 1.53                  | -5.51              |  |  |  |  |
|                                                                                          | 2                | -6         | -1.44  | 2.5                   | -4.94              |  |  |  |  |
|                                                                                          | 3                | -4.91      | -1.28  | 1.97                  | -4.22              |  |  |  |  |
|                                                                                          | 4                | -2.33      | -1.24  | 1.4                   | -2.17              |  |  |  |  |
| [N <sub>111</sub> -C <sub>5</sub> -mim] <sup>2+</sup> -CO <sub>2</sub>                   | 1                | -6.3       | -1.31  | 1.37                  | -6.24              |  |  |  |  |
|                                                                                          | 2                | -6.48      | -1.55  | 2.62                  | -5.41              |  |  |  |  |
|                                                                                          | 3                | -7.41      | -1.32  | 1.68                  | -7.05              |  |  |  |  |
| $[Bis(mim)C_{5}-(C_{4})_{2}]^{2+}-CO_{2}$                                                | 1                | -5.69      | -2.17  | 1.39                  | -6.47              |  |  |  |  |
|                                                                                          | 2                | -3.92      | -2.14  | 1.79                  | -4.27              |  |  |  |  |
|                                                                                          | 3                | -4.61      | -2.05  | 1.49                  | -5.17              |  |  |  |  |
|                                                                                          | 4                | -2.42      | -2.07  | 1.41                  | -3.08              |  |  |  |  |
| [NTf <sub>2</sub> ] <sup>-</sup> -CO <sub>2</sub>                                        | 1                | -8.25      | -0.526 | 1.96                  | -6.82              |  |  |  |  |
| DIL-CO <sub>2</sub> complexes                                                            |                  |            |        |                       |                    |  |  |  |  |
| $[Bis(mim)C_5][NTf_2]_2-CO_2$                                                            | 1                | -10.57     | -3.31  | 1.13                  | -12.75             |  |  |  |  |
|                                                                                          | 2                | -7.20      | -4.29  | 1.99                  | -9.50              |  |  |  |  |
| [N <sub>111</sub> -C <sub>5</sub> -mim][NTf <sub>2</sub> ] <sub>2</sub> -CO <sub>2</sub> | 1                | -6.36      | -4.98  | 1.04                  | -10.3              |  |  |  |  |
|                                                                                          | 2                | -2.69      | -4.72  | 2.50                  | -4.91              |  |  |  |  |
|                                                                                          | 3                | -7.50      | -5.00  | 0.99                  | -11.51             |  |  |  |  |
| $[Bis(mim)C_{5}-(C_{4})_{2}][NTf_{2}]_{2}-CO_{2}$                                        | 1                | -9.04      | -5.81  | 1.48                  | -13.37             |  |  |  |  |
| · · · · - ·                                                                              | 2                | -6.48      | -5.78  | 2.30                  | -9.96              |  |  |  |  |
|                                                                                          | 3                | -8.90      | -5.76  | 1.34                  | -13.32             |  |  |  |  |

Table S4. Interaction energies ( $\Delta E_{int}$  in kcal/mol), empirical dispersion (D<sub>3</sub>), and basis set superposition errors (BSSEs in kcal/mol) for studied ion-CO<sub>2</sub> and DIL-CO<sub>2</sub> complexes.