Supplementary Material

Visible-Light-Driven SAQS-Catalyzed Aerobic Oxidative Dehydrogenation of Alkyl 2-Phenylhydrazinecarboxylates

Van Hieu Tran^{a,b} and Hee-Kwon Kim^{a,b}*

^a Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea

^b Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea

* Corresponding author. Hee-Kwon Kim: Tel: +82 63 250 2768; Fax: +82 63 255 1172.

E-mail address: hkkim717@jbnu.ac.kr (H. Kim).

Table of Contents

Table of Contents	S1
General Information	S2
Table S1. Screening of additives and solvents for synthesis of ethyl (E)-2-phenyldiazene-1- carboxylate	S3
Table S2. Screening of amounts of reagents for synthesis of ethyl (E)-2-phenyldiazene-1- carboxylate	S4
General procedure of the synthesis of azo compounds	S5
Characterization of azo compounds	S6
¹ H and ¹³ C NMR Spectra	S16

General Information

All reactions were carried out in a 10-mL test tube. Commercial chemicals and solvents were used in place of the originals without any purification. The reaction was monitored using thin-layer chromatography (TLC). TLC spots were identified using an ultraviolet light (254nm) and a silica gel 60 F_{254} pre-coated aluminum plate from Merck. Flash chromatography was carried out using silica gel with mesh sizes ranging from 230 to 400 mesh and analytical grade solvents. The melting points of the products have to be recorded using a Stuart SMP10 Melting Point Apparatus. To determine the structure of molecules, NMR spectroscopy (¹H and ¹³C NMR) was performed using a Bruker Avance 400 MHz spectrometer. Chemical shifts were recorded in parts per million (ppm) relative to the remaining protonated solvent resonance, coupling constants (*J*) in hertz, and signal multiplicity as follows: singlet (s); doublet (d); doublet of doublet (dd); triplet (t); multiplet (m); multiplet of multiplet (m);

HN.	N O SAQS Additive H Sol	e LEDs 5 (3 mol%) 2 (15 mol%) vent, air t, 15h					
1a 2a							
Entry	Photocatalyst	Additive	Solvent	Yield ^b			
				(%)			
1	SAQS	-	MeCN	85			
2	SAQS	DIPEA	MeCN	4			
3	SAQS	Et ₃ N	MeCN	6			
4	SAQS	DMAP	MeCN	20			
5	SAQS	NaHCO ₃	MeCN	34			
6	SAQS	CsCO ₃	MeCN	65			
7	SAQS	DBU	MeCN	76			
8	SAQS	K ₂ CO ₃	MeCN	97			
9	SAQS	K ₂ CO ₃	Toluene	5			
10	SAQS	K ₂ CO ₃	DCE	7			
11	SAQS	K ₂ CO ₃	CH_2Cl_2	17			
12	SAQS	K ₂ CO ₃	1,4-dioxane	19			
13	SAQS	K ₂ CO ₃	DMF	61			
14	SAQS	K ₂ CO ₃	THF	65			
15 ^d	SAQS	K ₂ CO ₃	MeCN	NR ^c			
16 ^e	SAQS	K ₂ CO ₃	MeCN	65			
$17^{\rm f}$	SAQS	K ₂ CO ₃	MeCN	70			
18 ^g	SAQS	K ₂ CO ₃	MeCN	72			
19 ^h	SAQS	K ₂ CO ₃	MeCN	88			

Table S1. Screening of additives and solvents for synthesis of ethyl (E)-2-phenyldiazene-1-carboxylate^a

^a Reaction conditions: compound 1a (1.0 mmol), photocatalyst (0.03 mmol), Additive (0.15 mmol), solvent (2 mL), room temperature, irradiation with 5W blue LEDs for 15 h, ^b Isolated yield after purification by flash column chromatography, ^c No reaction, ^dNo light, ^eirradiation with green LEDs, ^firradiation with CFL, ^girradiation with white LEDs, ^hirradiation with sunlight

 Table S2. Screening of amounts of reagents for synthesis of ethyl (E)-2-phenyldiazene-1

 carboxylate^a

	H 0 N N 0	blue LEDs SAQS K₂CO₃ MeCN, air rt, 15h	O N∑N 2a	0
Entry	SAQS	K ₂ CO ₃	MeCN	Yield ^b
	(equiv.)	(equiv.)		(%)
1	0.005	0.15	2 mL	83
2	0.01	0.15	2 mL	89
3	0.03	0.15	2 mL	97
4	0.05	0.15	2 mL	97
5	0.1	0.15	2 mL	97
6	0.03	0.01	2 mL	80
7	0.03	0.03	2 mL	82
8	0.03	0.05	2 mL	85
9	0.03	0.10	2 mL	91
10	0.03	0.15	2 mL	97
11	0.03	0.20	2 mL	97

^a Reaction conditions: compound **1a** (1.0 mmol), MeCN (2 mL), room temperature, irradiation with 5W blue LEDs for 15 h, ^b Isolated yield after purification by flash column chromatography.

1. General procedure of the synthesis of azo compounds (2a-2z, 4a-4l)

1.1. Preparation of alkyl 2-phenylazocarboxylates (2a-2z)

In a typical synthetic procedure, phenylhydrazine carboxylate (**1a**) (180 mg, 1.0 mmol), SAQS (9.3 mg, 0.03 mmol), and K₂CO₃ (20.1 mg, 0.15 mmol) were added to MeCN (2 mL). The mixture was stirred at room temperature under irradiation by 5W blue LEDs. After 15 hours, the mixture was extracted with 20 mL of CH₂Cl₂ and washed with 20 mL of water. The organic layer was dried by sodium sulfate and concentrated under reduced pressure. The residue was purified using flash column chromatography on silica gel with hexane-EtOAc as the eluent to get the intended product (**2a**) (172.66 mg, 97%).

1.2. Preparation of azobenzenes (4a-4l)

1,2-diphenylhydrazine (**3a**) (184.0 mg, 1.0 mmol), SAQS (9.3 mg, 0.03 mmol), and K₂CO₃ (20.1 mg, 0.15 mmol) were added to MeCN (2 mL). The mixture was stirred at room temperature under irradiation by 5W blue LEDs. After 15 hours, the mixture was extracted with 20 mL of CH₂Cl₂ and washed with 20 mL of water. The organic layer was dried by sodium sulfate and concentrated under reduced pressure. The residue was purified using flash column chromatography on silica gel with hexane-EtOAc as the eluent to get the intended product (**4a**) as yellow solid (173.0 mg, 95 %).

Ethyl (E)-2-phenyldiazene-1-carboxylate (2a): Yellow oil.
¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 2H), 7.60 – 7.51 (m, 3H), 4.53 (q, J = 7.6 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 162.2, 151.6, 133.8, 129.3 (2C), 123.8 (2C), 64.5, 14.2.

HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₁N₂O₂ = 179.0821, found 179.0823.

Ethyl (E)-2-(p-tolyl)diazene-1-carboxylate (2b): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.86 – 8.83 (dt, *J* = 6.8 Hz, *J* = 2.0 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 4.52 (q, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 1.47 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 149.9, 145.2, 129.9 (2C), 123.9 (2C), 64.4, 21.8, 14.2. HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₃N₂O₂ = 193.0977, found 193.0978.

_N:_N/

Ethyl (E)-2-(4-ethylphenyl)diazene-1-carboxylate (2c): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 – 7.86 (dd, *J* = 6.4 Hz, *J* = 1.6 Hz 2H), 7.36 (d, *J* = 8.8 Hz, 2H), 4.52 (q, *J* = 6.8 Hz, 2H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.47 (t, *J* = 6.8 Hz, 3H), 1.28 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 151.3, 150.0, 128.8 (2C), 124.1 (2C), 64.4, 29.0, 15.1, 14.2.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{11}H_{15}N_2O_2 = 207.1134$, found 207.1137.

Ethyl (E)-2-(4-methoxyphenyl)diazene-1-carboxylate (2d): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (dt, J = 9.2 Hz, J = 2.4 Hz, 2H), 7.02 – 6.98 (dt, J= 8.8 Hz, J = 2.0 Hz, 2H), 4.52 (q, J = 7.2 Hz, 2H), 3.91 (s, 3H), 1.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 162.1, 146.1, 126.5 (2C), 114.5 (2C), 64.2, 55.8, 14.2. HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₃N₂O₃ = 209.0926, found 209.0925.

Ethyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (2e): Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.90- 7.86 (dt, J = 8.8 Hz, J = 2.0 Hz, 2H), 7.54 (dt, J = 8.4 Hz, J = 8.4 Hz, 2H), 4.53 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.9, 149.9, 140.2, 129.7 (2C), 125.0 (2C), 64.6, 14.2. HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₀ClN₂O₂ = 213.0431, found 213.0428.

Ethyl (E)-2-(4-bromophenyl)diazene-1-carboxylate (2f): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.78 (dt, J = 8.8 Hz, J = 2.0 Hz, 2H), 7.69 – 7.66 (dt, J= 8.8 Hz, J = 2.0 Hz, 2H), 4.53 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 150.3, 132.7 (2C), 128.9, 125.14 (2C), 64.6, 14.2. HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₀BrN₂O₂ = 256.9926, found 256.9927.

Ethyl (E)-2-(4-nitrophenyl)diazene-1-carboxylate (2g): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.38 (dt, J = 8.8 Hz, J = 2.0 Hz 2H), 8.06 – 8.04 (dt, J= 8.8 Hz, J = 2.0 Hz 2H), 4.56 (q, J = 7.2 Hz, 2H), 1.51 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 154.3, 150.4, 124.9 (2C), 124.3 (2C), 65.1, 14.2. HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₀N₃O₄ = 224.0671, found 224.0674.

Ethyl (E)-2-(o-tolyl)diazene-1-carboxylate (2h): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.58 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.44 (td, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.24 (t, *J* = 7.2 Hz, 1H), 4.52 (q, *J* = 7.2 Hz, 2H), 2.69 (s, 1H), 1.47 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.6, 149.9, 140.69, 133.7, 131.6, 126.4, 115.27, 64.3, 17.5, 14.2.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{10}H_{13}N_2O_2 = 193.0977$, found 193.0979.

Ethyl (E)-2-(3-chlorophenyl)diazene-1-carboxylate (2i): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.89 – 7.84 (m, 2H), 7.57 – 7.55 (m, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 4.53 (q, *J* = 7.2 Hz, 2H), 1.47 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8, 152,3, 135.5, 133.5, 130.4, 123.4, 122.4, 64.7, 14.2. HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₀ClN₂O₂ = 213.0431, found 213.0435.

Ethyl (E)-2-(3,5-dimethylphenyl)diazene-1-carboxylate (2j): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.56 (s, 2H), 7.22 (s, 1H), 4.52 (q, *J* = 7.2 Hz, 2H), 2.39 (s, 6H), 1.47 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 151.9, 139.1 (2C), 135.6, 121.6 (2C), 64.4, 21.1 (2C), 14.2.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{11}H_{15}N_2O_2 = 207.1134$, found 207.1136.

Ethyl (E)-2-(3,5-dichlorophenyl)diazene-1-carboxylate (2k): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.81 (d, *J* = 2.0 Hz, 2H), 7.56 (t, *J* = 2.0 Hz, 1H), 4.53 (q, *J* = 7.2 Hz, 2H), 1.47 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.5, 152.5, 136.1 (2C), 132.9, 122.2 (2C), 64.9, 14.2. HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₉Cl₂N₂O₂ = 247.0041, found 247.0042.

Ethyl (E)-2-(benzo[d][1,3]dioxol-5-yl)diazene-1-carboxylate (2l): Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 6.73 – 6.65 (m, 2H), 6.46 (s, 1H), 5.93 (s, 2H), 4.31(q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 153.8, 147.9, 143.7, 132.2, 111.9, 108.1, 101.9, 101.2, 61.2, 14.6.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{10}H_{11}N_2O_4 = 223.0719$, found 223.0716.

Ethyl (E)-2-(naphthalen-1-yl)diazene-1-carboxylate (2m): Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H),

7.94 (d, *J* = 8.0 Hz, 1H), 7.84 – 7.82 (dd, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.69 -7.65 (m, 1H), 7.63 – 7.59 (m, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 4.57 (q, *J* = 7.2 Hz, 2H), 1.51 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.1, 142.6 (2C), 134.1, 128.6, 126.0, 125.9, 125.3, 123.0, 121.3, 119.8, 62.0, 14.5.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{13}H_{13}N_2O_2 = 229.0977$, found 229.0975.

Benzyl (E)-2-phenyldiazene-1-carboxylate (2n): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.95 – 7.92 (m, 2H), 7.61 – 7.48 (m, 5H), 7.44 – 7.36 (m, 3H), 5.49 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.1, 151.6, 134.4, 133.9, 129.32 (2C), 128.9, 128.8 (2C), 128.7 (2C), 123.9 (2C), 69.9.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{14}H_{13}N_2O_2 = 241.0977$, found 241.0974.

Benzyl (E)-2-(p-tolyl)diazene-1-carboxylate (20): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.85 (d, J = 8.4 Hz, 2H), 7.50 – 7.48 (dd, J = 8.0 Hz, J = 1.2 Hz, 2H), 7.43 – 7.36 (m, 5H), 5.47 (s, 2H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.1, 149.9, 145.33, 134.5, 130.0 (2C), 128.8, 128.8 (2C), 128.7 (2C), 124.0 (2C), 69.8. 21.8.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{15}H_{15}N_2O_2 = 255.1134$, found 255.1136.

Benzyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (2p): Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.86 (dt, J = 6.8 Hz, J = 2.4 Hz, 2H), 7.52 – 7.48 (m, 4H), 7.43 – 7.38 (m, 3H), 5.47 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8, 149.9, 140.3, 134.3, 129.7 (2C), 128.9, 128.8 (2C), 128.8 (2C), 125.1 (2C), 70.1.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{14}H_{12}CIN_2O_2 = 275.0587$, found 275.0588.

Benzyl (E)-2-(4-nitrophenyl)diazene-1-carboxylate (2q): Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.37 (dt, J = 8.8 Hz, J = 2.0 Hz, 2H), 8.06 - 8.03 (dt, J = 8.8 Hz, J = 2.0 Hz, 2H), 7.50 – 7.47 (m, 2H), 7.45 – 7.38 (m, 3H), 5.49 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 161.5, 154.3, 150.4, 133.9, 129.2, 128.8 (4C), 124.8 (2C), 124.3 (2C), 70.5.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{14}H_{12}N_3O_4 = 286.0828$, found 286.0830.

2,2,2-trichloroethyl (E)-2-phenyldiazene-1-carboxylate (2r): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.01 – 7.98 (m, 2H), 7.65 -7.61 (m, 1H), 7.58 – 7.54 (m, 2H), 5.07 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 160.7, 151.7, 134.6, 129.4 (2C), 124.2 (2C), 93.9, 76.5. HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₈Cl₃N₂O₂ = 280.9651, found 280.9653.

2,2,2-trichloroethyl (E)-2-(p-tolyl)diazene-1-carboxylate (2s): Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 5.06 (s, 2H), 2.47 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.7, 153.2, 146.2, 130.1 (2C), 124.4 (2C), 93.9, 76.5, 21.9. HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₀Cl₃N₂O₂ = 294.9808, found 294.9807.

2,2,2-trichloroethyl (E)-2-(naphthalen-1-yl)diazene-1-carboxylate (2t): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 84 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.96 – 7.92 (m, 2H), 7.72 – 7.68 (m, 1H), 7.65 - 7.61 (m, 1H), 7.58 (t, J = 8.0 Hz, 1H), 5.11 (s, 2H. ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 135.5, 128.2, 128.1, 127.8 (2C), 127.1, 125.8, 125.2, 123.2, 113.1, 93.9, 76.5.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{13}H_{10}Cl_3N_2O_2 = 330.9808$, found 330.9805.

tert-butyl (E)-2-phenyldiazene-1-carboxylate (2u): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 2H), 7.58 – 7.49 (m, 3H), 1.66 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 146.7, 133.4, 129.2 (2C), 123.6 (2C), 85.0, 27.9 (3C). HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₅N₂O₂ = 207.1134, found 207.1136.

tert-butyl (E)-2-(p-tolyl)diazene-1-carboxylate (2v): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.82 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 2.43 (m, 3H), 1.65 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 161.3, 146.8, 144.6, 129.9 (2C), 123.7 (2C), 84.8, 27.9 (3C), 21.7.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{12}H_{17}N_2O_2 = 221.1290$, found 221.1293.

tert-butyl (E)-2-(4-methoxyphenyl)diazene-1-carboxylate (2w): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 – 7.91 (dt, *J* = 9.2 Hz, *J* = 2.0 Hz, 2H), 7.00 – 6.97 (dt, *J* = 9.2 Hz, *J* = 2.0 Hz, 2H), 3.89 (m, 3H), 1.66 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 164.2, 161.2, 146.0, 126.2 (2C), 114.4 (2C), 84.4, 55.7, 27.9 (3C).

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{12}H_{17}N_2O_3 = 237.1239$, found 237.1236.

tert-butyl (*E*)-2-(4-chlorophenyl)diazene-1-carboxylate (2x): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.84 (dt, *J* = 8.8 Hz, *J* = 2.0 Hz, 2H), 7.50 – 7.48 (dt, *J* = 8.8 Hz, *J* = 2.0 Hz, 2H), 1.66 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 160.9, 149.9, 139.7, 129.6 (2C), 124.9 (2C), 85.3, 27.9 (3C). HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₄ClN₂O₂ = 241.0744, found 241.0746.

Ethyl (E)-2-(pyridin-2-yl)diazene-1-carboxylate (2y): Colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 3.6 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.71 (t, J = 6.8 Hz, 1H), 7.12 – 7.09 (dt, J = 4.8 Hz, J = 1.2 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.1, 154.5, 153.0, 147.7, 137.9, 120.9, 62.2, 14.4. HRMS (ESI) m/z (M+H)⁺ calcd for C₈H₁₀N₃O₂ = 180.0773, found 180.0776.

(E)-1,2-diphenyldiazene (4a): Yellow solid. m.p. 66 -68 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 – 7.91 (dt, J = 8.0 Hz, J = 2.0 Hz, 4H), 7.55 – 7.46 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 152.6 (2C), 131.0 (2C), 129.1 (4C), 122.9 (4C).

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{12}H_{11}N_2 = 183.0922$, found 183.0921.

(E)-1,2-bis(4-methoxyphenyl)diazene (4b): Yellow solid. m.p. 160 -162 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.8 Hz, 4H), 7.04 (d, J = 9.2 Hz, 4H), 3.91 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 161.7 (2C), 146.9 (2C), 124.5 (4C), 114.2 (4C), 55.6 (2C). HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₅N₂O₂ = 243.1134, found 243.1138.

(E)-1,2-bis(4-bromophenyl)diazene (4c): Yellow solid. m.p. 203 - 205 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.78 (dt, J = 8.4 Hz, J = 2.0 Hz, 4H), 7.66 – 7.64 (dt, J = 8.8 Hz, J = 2.0 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 151.2 (2C), 132.4 (4C), 125.8 (2C), 124.4 (4C). HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₉Br₂N₂ = 338.9132, found 338.9129.

(E)-1-phenyl-2-(p-tolyl)diazene (4d): Yellow solid. m.p. 68 - 70 °C.

¹H NMR (400 MHz, DMSO d₆) δ 7.89 – 7.87 (m, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.62 – 7.56 (m, 3H), 7.42 (d, J = 7.6 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (100 MHz, DMSO d₆) δ 150.5, 148.1, 129.7 (2C), 129.2 (2C), 126.6, 117.9, 112.3 (2C), 112.1 (2C), 20.6.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{13}H_{13}N_2 = 197.1079$, found 197.1076.

(E)-1-(4-chlorophenyl)-2-phenyldiazene (4e): Yellow oil. m.p. 87 - 89 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.87 (m, 4H), 7.45 – 7.48 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 152.4, 150.9, 136.9, 131.3, 129.4 (2C), 129.2 (2C), 124.1 (2C), 122.9 (2C).

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{12}H_{10}ClN_2 = 217.0533$, found 217.0535.

Methyl (E)-4-(phenyldiazenyl)benzoate (4f): Yellow solid. m.p. 123 -125 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.18 (dt, J = 8.8 Hz, J = 2.0 Hz, 2H), 7.96 – 7.94 (dt, J = 6.0 Hz, J = 1.6 Hz, 4H), 7.56 – 7.49 (m, 3H), 3.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 155.1, 152.6, 131.8, 131.7, 130.6 (2C), 129.2 (2C), 123.2 (2C), 122.6 (2C), 52.4.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{14}H_{13}N_2O_2 = 241.0977$, found 241.0979.

(E)-1-benzyl-2-phenyldiazene (6a): Yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.40 - 7.28 (m, 5H), 7.19 (t, *J* = 8.4 Hz, 2H), 6.76 (t, *J* = 7.2 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 2H), 4.34 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 147.2, 138.8, 129.3 (2C), 128.6 (2C), 127.8 (2C), 127.4, 126.2, 118.4, 113.6, 48.9.

HRMS (ESI) m/z (M+H)⁺ calcd for $C_{13}H_{13}N_2 = 197.1079$, found 197.1082.

¹H NMR spectrum of ethyl (*E*)-2-phenyldiazene-1-carboxylate (**2a**)

¹³C NMR spectrum of ethyl (*E*)-2-phenyldiazene-1-carboxylate (2a)

Ethyl (E)-2-(p-tolyl)diazene-1-carboxylate (2b)

¹H NMR spectrum of ethyl (E)-2-(*p*-tolyl)diazene-1-carboxylate (**2b**)

¹³C NMR spectrum of ethyl (E)-2-(*p*-tolyl)diazene-1-carboxylate (**2b**)

Ethyl (E)-2-(4-ethylphenyl)diazene-1-carboxylate (2c)

¹H NMR spectrum of ethyl (E)-2-(4-ethylphenyl)diazene-1-carboxylate (2c)

¹³C NMR spectrum of ethyl (E)-2-(4-ethylphenyl)diazene-1-carboxylate (2c)

Ethyl (E)-2-(4-methoxyphenyl)diazene-1-carboxylate (2d)

¹H NMR spectrum of ethyl (E)-2-(4-methoxyphenyl)diazene-1-carboxylate (2d)

¹³C NMR spectrum of ethyl (E)-2-(4-methoxyphenyl)diazene-1-carboxylate (2d)

Ethyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (2e)

¹H NMR spectrum of ethyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (2e)

¹³C NMR spectrum of ethyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (2e)

Ethyl (E)-2-(4-bromophenyl)diazene-1-carboxylate (2f)

¹H NMR spectrum of ethyl (E)-2-(4-bromophenyl)diazene-1-carboxylate (2f)

¹³C NMR spectrum of ethyl (E)-2-(4-bromophenyl)diazene-1-carboxylate (2f)

Ethyl (E)-2-(4-nitrophenyl)diazene-1-carboxylate (2g)

¹H NMR spectrum of ethyl (E)-2-(4-nitrophenyl)diazene-1-carboxylate (2g)

¹³C NMR spectrum of ethyl (E)-2-(4-nitrophenyl)diazene-1-carboxylate (2g)

Ethyl (E)-2-(o-tolyl)diazene-1-carboxylate (2h)

¹H NMR spectrum of ethyl (E)-2-(o-tolyl)diazene-1-carboxylate (2h)

¹³C NMR spectrum of ethyl (E)-2-(o-tolyl)diazene-1-carboxylate (2h)

Ethyl (E)-2-(3-chlorophenyl)diazene-1-carboxylate (2i)

¹H NMR spectrum of ethyl (E)-2-(3-chlorophenyl)diazene-1-carboxylate (2i)

¹³C NMR spectrum of ethyl (E)-2-(3-chlorophenyl)diazene-1-carboxylate (2i)

Ethyl (E)-2-(3,5-dimethylphenyl)diazene-1-carboxylate (2j)

¹H NMR spectrum of ethyl (E)-2-(3,5-dimethylphenyl)diazene-1-carboxylate (2j)

¹³C NMR spectrum of ethyl (E)-2-(3,5-dimethylphenyl)diazene-1-carboxylate (2j)

Ethyl (E)-2-(3,5-dichlorophenyl)diazene-1-carboxylate (2k)

¹H NMR spectrum of ethyl (E)-2-(3,5-dichlorophenyl)diazene-1-carboxylate (2k)

¹³C NMR spectrum of ethyl (E)-2-(3,5-dichlorophenyl)diazene-1-carboxylate (2k)

Ethyl (E)-2-(benzo[d][1,3]dioxol-5-yl)diazene-1-carboxylate (2l)

¹H NMR spectrum of ethyl (E)-2-(benzo[d][1,3]dioxol-5-yl)diazene-1-carboxylate (2l)

¹³C NMR spectrum of ethyl (E)-2-(benzo[d][1,3]dioxol-5-yl)diazene-1-carboxylate (2l)

Ethyl (E)-2-(naphthalen-1-yl)diazene-1-carboxylate (2m)

¹H NMR spectrum of ethyl (E)-2-(naphthalen-1-yl)diazene-1-carboxylate (**2m**)

¹³C NMR spectrum of ethyl (E)-2-(naphthalen-1-yl)diazene-1-carboxylate (**2m**)

Benzyl (E)-2-phenyldiazene-1-carboxylate (2n)

¹H NMR spectrum of benzyl (E)-2-phenyldiazene-1-carboxylate (2n)

¹³C NMR spectrum of benzyl (E)-2-phenyldiazene-1-carboxylate (2n)

¹H NMR spectrum of benzyl (E)-2-(*p*-tolyl)diazene-1-carboxylate (20)

¹³C NMR spectrum of benzyl (E)-2-(*p*-tolyl)diazene-1-carboxylate (**2**0)

¹H NMR spectrum of benzyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (2p)

¹³C NMR spectrum of benzyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (**2p**)

¹H NMR spectrum of benzyl (E)-2-(4-nitrophenyl)diazene-1-carboxylate (2q)

¹³C NMR spectrum of benzyl (E)-2-(4-nitrophenyl)diazene-1-carboxylate (2q)

2,2,2-trichloroethyl (E)-2-phenyldiazene-1-carboxylate (2r)

¹H NMR spectrum of 2,2,2-trichloroethyl (E)-2-phenyldiazene-1-carboxylate (**2r**)

¹³C NMR spectrum of 2,2,2-trichloroethyl (E)-2-phenyldiazene-1-carboxylate (2r)

2,2,2-trichloroethyl (E)-2-(p-tolyl)diazene-1-carboxylate (2s)

¹H NMR spectrum of 2,2,2-trichloroethyl (E)-2-(p-tolyl)diazene-1-carboxylate (2s)

¹³C NMR spectrum of 2,2,2-trichloroethyl (E)-2-(p-tolyl)diazene-1-carboxylate (2s)

¹H NMR spectrum of 2,2,2-trichloroethyl (E)-2-(naphthalen-1-yl)diazene-1-carboxylate (2t)

¹³C NMR spectrum of 2,2,2-trichloroethyl (E)-2-(naphthalen-1-yl)diazene-1-carboxylate (2t)

tert-butyl (E)-2-phenyldiazene-1-carboxylate (2u)

¹H NMR spectrum of *tert*-butyl (E)-2-phenyldiazene-1-carboxylate (2u)

¹³C NMR spectrum of *tert*-butyl (E)-2-phenyldiazene-1-carboxylate (2u)

tert-butyl (E)-2-(p-tolyl)diazene-1-carboxylate (2v)

¹H NMR spectrum of *tert*-butyl (E)-2-(p-tolyl)diazene-1-carboxylate (2v)

¹³C NMR spectrum of *tert*-butyl (E)-2-(p-tolyl)diazene-1-carboxylate (2v)

tert-butyl (*E*)-2-(4-methoxyphenyl)diazene-1-carboxylate (2w)

¹H NMR spectrum of *tert*-butyl (E)-2-(4-methoxyphenyl)diazene-1-carboxylate (**2**w)

¹³C NMR spectrum of *tert*-butyl (E)-2-(4-methoxyphenyl)diazene-1-carboxylate (**2w**)

tert-butyl (*E*)-2-(4-chlorophenyl)diazene-1-carboxylate (2x)

¹H NMR spectrum of *tert*-butyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (**2x**)

¹³C NMR spectrum of *tert*-butyl (E)-2-(4-chlorophenyl)diazene-1-carboxylate (2x)

Ethyl (E)-2-(pyridin-2-yl)diazene-1-carboxylate (2y)

¹³C NMR spectrum of ethyl (E)-2-(pyridin-2-yl)diazene-1-carboxylate (2y)

(E)-1,2-diphenyldiazene (4a)

¹H NMR spectrum of (E)-1,2-diphenyldiazene (4a)

¹³C NMR spectrum of (E)-1,2-diphenyldiazene (4a)

(E)-1,2-bis(4-methoxyphenyl)diazene (4b)

¹H NMR spectrum of (E)-1,2-bis(4-methoxyphenyl)diazene (**4b**)

¹³C NMR spectrum of (E)-1,2-bis(4-methoxyphenyl)diazene (4b)

(E)-1,2-bis(4-bromophenyl)diazene (4c)

¹H NMR spectrum of (E)-1,2-bis(4-bromophenyl)diazene (**4c**)

¹³C NMR spectrum of (E)-1,2-bis(4-bromophenyl)diazene (4c)

(E)-1-phenyl-2-(p-tolyl)diazene (4d)

¹H NMR spectrum of (E)-1-phenyl-2-(p-tolyl)diazene (4d)

¹³C NMR spectrum of (E)-1-phenyl-2-(p-tolyl)diazene (4d)

(E)-1-(4-chlorophenyl)-2-phenyldiazene (4e)

¹H NMR spectrum of (E)-1-(4-chlorophenyl)-2-phenyldiazene (4e)

¹³C NMR spectrum of (E)-1-(4-chlorophenyl)-2-phenyldiazene (4e)

Methyl (E)-4-(phenyldiazenyl)benzoate (4f)

¹H NMR spectrum of methyl (E)-4-(phenyldiazenyl)benzoate (4f)

¹³C NMR spectrum of methyl (E)-4-(phenyldiazenyl)benzoate (4f)

(E)-1-benzyl-2-phenyldiazene (6a)

¹³C NMR spectrum of (E)-1-benzyl-2-phenyldiazene (6a)